Cholesterol-Secreting and Statin-Responsive Hepatocytes from Human ES and iPS Cells to Model Hepatic Involvement in Cardiovascular Health
Hepatocytes play a central and crucial role in cholesterol and lipid homeostasis,and their proper function is of key importance for cardiovascular health. In particular,hepatocytes (especially periportal hepatocytes) endogenously synthesize large amounts of cholesterol and secrete it into circulating blood via apolipoprotein particles. Cholesterol-secreting hepatocytes are also the clinically-relevant cells targeted by statin treatment in vivo. The study of cholesterol homeostasis is largely restricted to the use of animal models and immortalized cell lines that do not recapitulate those key aspects of normal human hepatocyte function that result from genetic variation of individuals within a population. Hepatocyte-like cells (HLCs) derived from human embryonic and induced pluripotent stem cells can provide a cell culture model for the study of cholesterol homeostasis,dyslipidemias,the action of statins and other pharmaceuticals important for cardiovascular health. We have analyzed expression of core components for cholesterol homeostasis in untreated human iPS cells and in response to pravastatin. Here we show the production of differentiated cells resembling periportal hepatocytes from human pluripotent stem cells. These cells express a broad range of apolipoproteins required for secretion and elimination of serum cholesterol,actively secrete cholesterol into the medium,and respond functionally to statin treatment by reduced cholesterol secretion. Our research shows that HLCs derived from human pluripotent cells provide a robust cell culture system for the investigation of the hepatic contribution to human cholesterol homeostasis at both cellular and molecular levels. Importantly,it permits for the first time to also functionally assess the impact of genetic polymorphisms on cholesterol homeostasis. Finally,the system will also be useful for mechanistic studies of heritable dyslipidemias,drug discovery,and investigation of modes of action of cholesterol-modulatory drugs.
View Publication
文献
Oeda S et al. (JAN 2013)
The International journal of developmental biology 57 5 383--9
Induction of intermediate mesoderm by retinoic acid receptor signaling from differentiating mouse embryonic stem cells.
Renal lineages including kidney are derived from intermediate mesoderm,which are differentiated from a subset of caudal undifferentiated mesoderm. The inductive mechanisms of mammalian intermediate mesoderm and renal lineages are still poorly understood. Mouse embryonic stem cells (mESCs) can be a good in vitro model to reconstitute the developmental pathway of renal lineages and to analyze the mechanisms of the sequential differentiation. We examined the effects of Activin A and retinoic acid (RA) on the induction of intermediate mesoderm from mESCs under defined,serum-free,adherent,monolayer culture conditions. We measured the expression level of intermediate mesodermal marker genes and examined the developmental potential of the differentiated cells into kidney using an ex vivo transplantation assay. Adding Activin A followed by RA to mESC cultures induced the expression of marker genes and proteins for intermediate mesoderm,odd-skipped related 1 (Osr1) and Wilms Tumor 1 (Wt1). These differentiated cells integrated into laminin-positive tubular cells and Pax2-positive renal cells in cultured embryonic kidney explants. We demonstrated that intermediate mesodermal marker expression was also induced by RA receptor (RAR) agonist,but not by retinoid X receptor (RXR) agonists. Furthermore,the expression of these markers was decreased by RAR antagonists. We directed the differentiation of mESCs into intermediate mesoderm using Activin A and RA and revealed the role of RAR signaling in this differentiation. These methods and findings will improve our understanding of renal lineage development and could contribute to the regenerative medicine of kidney.
View Publication
文献
Liu M-L et al. (JAN 2013)
Nature communications 4 2183
Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons.
Cell fate can be reprogrammed by modifying intrinsic and extrinsic cues. Here we show that two small molecules (forskolin and dorsomorphin) enable the transcription factor Neurogenin 2 (NGN2) to convert human fetal lung fibroblasts into cholinergic neurons with high purity (textgreater90%) and efficiency (up to 99% of NGN2-expressing cells). The conversion is direct without passing through a proliferative progenitor state. These human induced cholinergic neurons (hiCN) show mature electrophysiological properties and exhibit motor neuron-like features,including morphology,gene expression and the formation of functional neuromuscular junctions. Inclusion of an additional transcription factor,SOX11,also efficiently converts postnatal and adult skin fibroblasts from healthy and diseased human patients to cholinergic neurons. Taken together,this study identifies a simple and highly efficient strategy for reprogramming human fibroblasts to subtype-specific neurons. These findings offer a unique venue for investigating the molecular mechanisms underlying cellular plasticity and human neurodegenerative diseases.
View Publication
DNA targeting specificity of RNA-guided Cas9 nucleases.
The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here,we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates textgreater700 guide RNA variants and SpCas9-induced indel mutation levels at textgreater100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner,sensitive to the number,position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications,we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.
View Publication
文献
Hou P et al. (AUG 2013)
Science (New York,N.Y.) 341 6146 651--4
Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds.
Pluripotent stem cells can be induced from somatic cells,providing an unlimited cell resource,with potential for studying disease and use in regenerative medicine. However,genetic manipulation and technically challenging strategies such as nuclear transfer used in reprogramming limit their clinical applications. Here,we show that pluripotent stem cells can be generated from mouse somatic cells at a frequency up to 0.2% using a combination of seven small-molecule compounds. The chemically induced pluripotent stem cells resemble embryonic stem cells in terms of their gene expression profiles,epigenetic status,and potential for differentiation and germline transmission. By using small molecules,exogenous master genes" are dispensable for cell fate reprogramming. This chemical reprogramming strategy has potential use in generating functional desirable cell types for clinical applications."
View Publication
文献
Bareiss PM et al. (SEP 2013)
Cancer research 73 17 5544--5555
SOX2 expression associates with stem cell state in human ovarian carcinoma.
The SRY-related HMG-box family of transcription factors member SOX2 regulates stemness and pluripotency in embryonic stem cells and plays important roles during early embryogenesis. More recently,SOX2 expression was documented in several tumor types including ovarian carcinoma,suggesting an involvement of SOX2 in regulation of cancer stem cells (CSC). Intriguingly,however,studies exploring the predictive value of SOX2 protein expression with respect to histopathologic and clinical parameters report contradictory results in individual tumors,indicating that SOX2 may play tumor-specific roles. In this report,we analyze the functional relevance of SOX2 expression in human ovarian carcinoma. We report that in human serous ovarian carcinoma (SOC) cells,SOX2 expression increases the expression of CSC markers,the potential to form tumor spheres,and the in vivo tumor-initiating capacity,while leaving cellular proliferation unaltered. Moreover,SOX2-expressing cells display enhanced apoptosis resistance in response to conventional chemotherapies and TRAIL. Hence,our data show that SOX2 associates with stem cell state in ovarian carcinoma and induction of SOX2 imposes CSC properties on SOC cells. We propose the existence of SOX2-expressing ovarian CSCs as a mechanism of tumor aggressiveness and therapy resistance in human SOC.
View Publication
文献
Bharadwaj R et al. (JUL 2013)
The Journal of neuroscience : the official journal of the Society for Neuroscience 33 29 11839--11851
Conserved Chromosome 2q31 Conformations Are Associated with Transcriptional Regulation of GAD1 GABA Synthesis Enzyme and Altered in Prefrontal Cortex of Subjects with Schizophrenia.
Little is known about chromosomal loopings involving proximal promoter and distal enhancer elements regulating GABAergic gene expression,including changes in schizophrenia and other psychiatric conditions linked to altered inhibition. Here,we map in human chromosome 2q31 the 3D configuration of 200 kb of linear sequence encompassing the GAD1 GABA synthesis enzyme gene locus,and we describe a loop formation involving the GAD1 transcription start site and intergenic noncoding DNA elements facilitating reporter gene expression. The GAD1-TSS(-50kbLoop) was enriched with nucleosomes epigenetically decorated with the transcriptional mark,histone H3 trimethylated at lysine 4,and was weak or absent in skin fibroblasts and pluripotent stem cells compared with neuronal cultures differentiated from them. In the prefrontal cortex of subjects with schizophrenia,GAD1-TSS(-50kbLoop) was decreased compared with controls,in conjunction with downregulated GAD1 expression. We generated transgenic mice expressing Gad2 promoter-driven green fluorescent protein-conjugated histone H2B and confirmed that Gad1-TSS(-55kbLoop),the murine homolog to GAD1-TSS(-50kbLoop),is a chromosomal conformation specific for GABAergic neurons. In primary neuronal culture,Gad1-TSS(-55kbLoop) and Gad1 expression became upregulated when neuronal activity was increased. We conclude that 3D genome architectures,including chromosomal loopings for promoter-enhancer interactions involved in the regulation of GABAergic gene expression,are conserved between the rodent and primate brain,and subject to developmental and activity-dependent regulation,and disordered in some cases with schizophrenia. More broadly,the findings presented here draw a connection between noncoding DNA,spatial genome architecture,and neuronal plasticity in development and disease.
View Publication
文献
Jiang J et al. (AUG 2013)
Nature 500 7462 296--300
Translating dosage compensation to trisomy 21.
Down's syndrome is a common disorder with enormous medical and social costs,caused by trisomy for chromosome 21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected by manipulating a single gene,XIST (the X-inactivation gene). Using genome editing with zinc finger nucleases,we inserted a large,inducible XIST transgene into the DYRK1A locus on chromosome 21,in Down's syndrome pluripotent stem cells. The XIST non-coding RNA coats chromosome 21 and triggers stable heterochromatin modifications,chromosome-wide transcriptional silencing and DNA methylation to form a ‘chromosome 21 Barr body'. This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21,free from genetic and epigenetic noise. Notably,deficits in proliferation and neural rosette formation are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro also surmounts the major first step towards potential development of ‘chromosome therapy'.
View Publication
文献
Buckley NE et al. (OCT 2013)
Nucleic acids research 41 18 8601--8614
BRCA1 is a key regulator of breast differentiation through activation of Notch signalling with implications for anti-endocrine treatment of breast cancers.
Here,we show for the first time,that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene,an event requiring $$Np63. We propose that this BRCA1/$$Np63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells,as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-$$ (ER-$$) expression and other luminal markers. A Notch mimetic peptide could activate an ER-$$ promoter reporter in a BRCA1-dependent manner,whereas Notch inhibition using a $$-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together,these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.
View Publication
文献
Kreitzer FR et al. (JUN 2013)
American journal of stem cells 2 2 119--31
A robust method to derive functional neural crest cells from human pluripotent stem cells.
Neural crest (NC) cells contribute to the development of many complex tissues of all three germ layers during embryogenesis,and its abnormal development accounts for several congenital birth defects. Generating NC cells-including specific subpopulations such as cranial,cardiac,and trunk NC cells-from human pluripotent stem cells will provide a valuable model system to study human development and disease. Here,we describe a rapid and robust NC differentiation method called LSB-short" that is based on dual SMAD pathway inhibition. This protocol yields high percentages of NC cell populations from multiple human induced pluripotent stem and human embryonic stem cell lines in 8 days. The resulting cells can be propagated easily�
View Publication
We previously demonstrated that RARα2 expression is increased in CD138 selected plasma cells of relapsed multiple myelomas (MMs),and increased expression was linked to poor prognosis in newly diagnosed MM patients. In the present study,we demonstrate that increased RARα2 confers myeloma stem cell features. Higher expression of RARα2 was identified in the multiple myeloma stem cell (MMSC) fraction. Overexpression of RARα2 in bulk MM cell lines resulted in: 1) increased drug resistance; 2) increased clonogenic potential; 3) activation of both Wnt and Hedgehog (Hh) pathways; 4) increased side population and aldehyde dehydrogenase levels; and 5) increased expression of embryonic stem cell genes. The opposite effects were seen with RARα2 knockdown. We demonstrate that RARα2 induces drug resistance by activating the drug efflux pump gene ABCC3 and anti-apoptotic Bcl-2 family members. Inhibition of Wnt signaling or ABCC3 function could overcome drug resistance in RARα2 overexpressing MM cells. We also showed that in the 5TGM1 mouse model,targeting of the Wnt and Hh pathways using CAY10404,cyclopamine,or itraconazole significantly reduced the myeloma tumor burden and increased survival. Targeting RARα2 or its downstream signaling pathways provides a potential strategy to eliminate MMSC.
View Publication
文献
Gertz M et al. (JUL 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 30 E2772--81
Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism.
Sirtuins are protein deacetylases regulating metabolism and stress responses. The seven human Sirtuins (Sirt1-7) are attractive drug targets,but Sirtuin inhibition mechanisms are mostly unidentified. We report the molecular mechanism of Sirtuin inhibition by 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide (Ex-527). Inhibitor binding to potently inhibited Sirt1 and Thermotoga maritima Sir2 and to moderately inhibited Sirt3 requires NAD(+),alone or together with acetylpeptide. Crystal structures of several Sirtuin inhibitor complexes show that Ex-527 occupies the nicotinamide site and a neighboring pocket and contacts the ribose of NAD(+) or of the coproduct 2'-O-acetyl-ADP ribose. Complex structures with native alkylimidate and thio-analog support its catalytic relevance and show,together with biochemical assays,that only the coproduct complex is relevant for inhibition by Ex-527,which stabilizes the closed enzyme conformation preventing product release. Ex-527 inhibition thus exploits Sirtuin catalysis,and kinetic isoform differences explain its selectivity. Our results provide insights in Sirtuin catalysis and inhibition with important implications for drug development.
View Publication