Continuous Hypoxic Culturing of Human Embryonic Stem Cells Enhances SSEA-3 and MYC Levels
Low oxygen tension (hypoxia) contributes critically to pluripotency of human embryonic stem cells (hESCs) by preventing spontaneous differentiation and supporting self-renewal. However,it is not well understood how hESCs respond to reduced oxygen availability and what are the molecular mechanisms maintaining pluripotency in these conditions. In this study we characterized the transcriptional and molecular responses of three hESC lines (H9,HS401 and HS360) on short (2 hours),intermediate (24 hours) and prolonged (7 days) exposure to low oxygen conditions (4% O2). In response to prolonged hypoxia the expression of pluripotency surface marker SSEA-3 was increased. Furthermore,the genome wide gene-expression analysis revealed that a substantial proportion (12%) of all hypoxia-regulated genes in hESCs,were directly linked to the mechanisms controlling pluripotency or differentiation. Moreover,transcription of MYC oncogene was induced in response to continuous hypoxia. At the protein level MYC was stabilized through phosphorylation already in response to a short hypoxic exposure. Total MYC protein levels remained elevated throughout all the time points studied. Further,MYC protein expression in hypoxia was affected by silencing HIF2α,but not HIF1α. Since MYC has a crucial role in regulating pluripotency we propose that induction of sustained MYC expression in hypoxia contributes to activation of transcriptional programs critical for hESC self-renewal and maintenance of enhanced pluripotent state.
View Publication
文献
Wolf J et al. ( 2013)
Breast cancer research : BCR 15 6 R109
A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype.
INTRODUCTION Breast cancer stem cells are suspected to be responsible for tumour recurrence,metastasis formation as well as chemoresistance. Consequently,great efforts have been made to understand the molecular mechanisms underlying cancer stem cell maintenance. In order to study these rare cells in-vitro,they are typically enriched via mammosphere culture. Here we developed a mammosphere-based negative selection shRNAi screening system suitable to analyse the involvement of thousands of genes in the survival of cells with cancer stem cell properties. METHODS We describe a sub-population expressing the stem-like marker CD44(+)/CD24(-/low) in SUM149 that were enriched in mammospheres. To identify genes functionally involved in the maintenance of the sub-population with cancer stem cell properties,we targeted over 5000 genes by RNAi and tested their ability to grow as mammospheres. The identified candidate ATG4A was validated in mammosphere and soft agar colony formation assays. Further,we evaluated the influence of ATG4A expression on the sub-population expressing the stem-like marker CD44(+)/CD24(low). Next,the tumorigenic potential of SUM149 after up- or down-regulation of ATG4A was examined by xenograft experiments. RESULTS Using this method,Jak-STAT as well as cytokine signalling were identified to be involved in mammosphere formation. Furthermore,the autophagy regulator ATG4A was found to be essential for the maintenance of a sub-population with cancer stem cell properties and to regulate breast cancer cell tumourigenicity in vivo. CONCLUSION In summary,we present a high-throughput screening system to identify genes involved in cancer stem cell maintenance and demonstrate its utility by means of ATG4A.
View Publication
文献
Kanakry CG et al. (NOV 2013)
Science translational medicine 5 211 211ra157
Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide.
High-dose,posttransplantation cyclophosphamide (PTCy) is an effective strategy for preventing graft-versus-host disease (GVHD) after allogeneic blood or marrow transplantation (alloBMT). However,the mechanisms by which PTCy modulates alloimmune responses are not well understood. We studied early T cell reconstitution in patients undergoing alloBMT with PTCy and the effects of mafosfamide,a cyclophosphamide (Cy) analog,on CD4(+) T cells in allogeneic mixed lymphocyte reactions (MLRs) in vitro. Patients exhibited reductions in naïve,potentially alloreactive conventional CD4(+) T cells with relative preservation of memory CD4(+)Foxp3(+) T cells. In particular,CD4(+)CD45RA(-)Foxp3(+hi) effector regulatory T cells (Tregs) recovered rapidly after alloBMT and,unexpectedly,were present at higher levels in patients with GVHD. CD4(+)Foxp3(+) T cells from patients and from allogeneic MLRs expressed relatively high levels of aldehyde dehydrogenase (ALDH),the major in vivo mechanism of Cy resistance. Treatment of MLR cultures with the ALDH inhibitor diethylaminobenzaldehyde reduced the activation and proliferation of CD4(+) T cells and sensitized Tregs to mafosfamide. Finally,removing Tregs from peripheral blood lymphocyte grafts obviated PTCy's GVHD-protective effect in a xenogeneic transplant model. Together,these findings suggest that Treg resistance to Cy through expression of ALDH may contribute to the clinical activity of PTCy in preventing GVHD.
View Publication
文献
Rodrigues G et al. (APR 2014)
Stem Cell Reviews and Reports 10 2 151--161
Integrated Platform for Production and Purification of Human Pluripotent Stem Cell-Derived Neural Precursors
Human pluripotent stem cells (hPSCs) are a promising source of cells for clinical applications,such as transplantation of clinically engineered tissues and organs,and drug discovery programs due to their ability to self-renew and to be differentiated into cells from the three embryonic germ layers. In this study,the differentiation of two hPSC-lines into neural precursors (NPs) was accomplished with more than 80 % efficiency,by means of the dual-SMAD inhibition protocol,based on the use of two small molecules (SB431542 and LDN193189) to generate Pax6 and Nestin-positive neural entities. One of the major hurdles related to the in vitro generation of PSC-derived populations is the tumorigenic potential of cells that remain undifferentiated. These remaining hPSCs have the potential to generate teratomas after being transplanted,and may interfere with the outcome of in vitro differentiation protocols. One strategy to tackle this problem is to deplete these contaminating" cells during the differentiation process. Magnetic activated cell sorting (MACS) was used for the first time for purification of hPSC-derived NPs after the neural commitment stage using anti-Tra-1-60 micro beads for negative selection of the unwanted hPSCs. The depletion had an average efficiency of 80.4 ± 5 % and less than 1.5 % of Tra-1-60 positive cells were present in the purified populations. After re-plating�
View Publication
文献
Son M-Y et al. (APR 2014)
Human molecular genetics 23 7 1802--1816
Comparative receptor tyrosine kinase profiling identifies a novel role for AXL in human stem cell pluripotency.
The extensive molecular characterization of human pluripotent stem cells (hPSCs),human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) is required before they can be applied in the future for personalized medicine and drug discovery. Despite the efforts that have been made with kinome analyses,we still lack in-depth insights into the molecular signatures of receptor tyrosine kinases (RTKs) that are related to pluripotency. Here,we present the first detailed and distinct repertoire of RTK characteristic for hPSC pluripotency by determining both the expression and phosphorylation profiles of RTKs in hESCs and hiPSCs using reverse transcriptase-polymerase chain reaction with degenerate primers that target conserved tyrosine kinase domains and phospho-RTK array,respectively. Among the RTKs tested,the up-regulation of EPHA1,ERBB2,FGFR4 and VEGFR2 and the down-regulation of AXL,EPHA4,PDGFRB and TYRO3 in terms of both their expression and phosphorylation levels were predominantly related to the maintenance of hPSC pluripotency. Notably,the specific inhibition of AXL was significantly advantageous in maintaining undifferentiated hESCs and hiPSCs and for the overall efficiency and kinetics of hiPSC generation. Additionally,a global phosphoproteomic analysis showed that ∼30% of the proteins (293 of 970 phosphoproteins) showed differential phosphorylation upon AXL inhibition in undifferentiated hPSCs,revealing the potential contribution of AXL-mediated phosphorylation dynamics to pluripotency-related signaling networks. Our findings provide a novel molecular signature of AXL in pluripotency control that will complement existing pluripotency-kinome networks.
View Publication
文献
Nguyen HT et al. (FEB 2014)
Molecular Human Reproduction 20 2 168--177
Gain of 20q11.21 in human embryonic stem cells improves cell survival by increased expression of Bcl-xL
Gain of 20q11.21 is a chromosomal abnormality that is recurrently found in human pluripotent stem cells and cancers,strongly suggesting that this mutation confers a proliferative or survival advantage to these cells. In this work we studied three human embryonic stem cell (hESC) lines that acquired a gain of 20q11.21 during in vitro culture. The study of the mRNA gene expression levels of the loci located in the common region of duplication showed that HM13,ID1,BCL2L1,KIF3B and the immature form of the micro-RNA miR-1825 were up-regulated in mutant cells. ID1 and BCL2L1 were further studied as potential drivers of the phenotype of hESC with a 20q11.21 gain. We found no increase in the protein levels of ID1,nor the downstream effects expected from over-expression of this gene. On the other hand,hESC with a gain of 20q11.21 had on average a 3-fold increase of Bcl-xL (the anti-apoptotic isoform of BCL2L1) protein levels. The mutant hESC underwent 2- to 3-fold less apoptosis upon loss of cell-to-cell contact and were ∼2-fold more efficient in forming colonies from a single cell. The key role of BCL2L1 in this mutation was further confirmed by transgenic over-expression of BCL2L1 in the wild-type cells,leading to apoptosis-resistant cells,and BCL2L1-knock-down in the mutant hESC,resulting in a restoration of the wild-type phenotype. This resistance to apoptosis supposes a significant advantage for the mutant cells,explaining the high frequency of gains of 20q11.21 in human pluripotent stem cells.
View Publication
文献
Ajani JA et al. (FEB 2014)
Molecular oncology 8 1 142--149
ALDH-1 expression levels predict response or resistance to preoperative chemoradiation in resectable esophageal cancer patients.
PURPOSE Operable thoracic esophageal/gastroesophageal junction carcinoma (EC) is often treated with chemoradiation and surgery but tumor responses are unpredictable and heterogeneous. We hypothesized that aldehyde dehydrogenase-1 (ALDH-1) could be associated with response. METHODS The labeling indices (LIs) of ALDH-1 by immunohistochemistry in untreated tumor specimens were established in EC patients who had chemoradiation and surgery. Univariate logistic regression and 3-fold cross validation were carried out for the training (67% of patients) and validation (33%) sets. Non-clinical experiments in EC cells were performed to generate complimentary data. RESULTS Of 167 EC patients analyzed,40 (24%) had a pathologic complete response (pathCR) and 27 (16%) had an extremely resistant (exCRTR) cancer. The median ALDH-1 LI was 0.2 (range,0.01-0.85). There was a significant association between pathCR and low ALDH-1 LI (p ≤ 0.001; odds-ratio [OR] = 0.432). The 3-fold cross validation led to a concordance index (C-index) of 0.798 for the fitted model. There was a significant association between exCRTR and high ALDH-1 LI (p ≤ 0.001; OR = 3.782). The 3-fold cross validation led to the C-index of 0.960 for the fitted model. In several cell lines,higher ALDH-1 LIs correlated with resistant/aggressive phenotype. Cells with induced chemotherapy resistance upregulated ALDH-1 and resistance conferring genes (SOX9 and YAP1). Sorted ALDH-1+ cells were more resistant and had an aggressive phenotype in tumor spheres than ALDH-1- cells. CONCLUSIONS Our clinical and non-clinical data demonstrate that ALDH-1 LIs are predictive of response to therapy and further research could lead to individualized therapeutic strategies and novel therapeutic targets for EC patients.
View Publication
文献
Xu C et al. (NOV 2013)
Cell 155 4 909--921
XA zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species
Ex vivo expansion of satellite cells and directed differentiation of pluripotent cells to mature skeletal muscle have proved difficult challenges for regenerative biology. Using a zebrafish embryo culture system with reporters of early and late skeletal muscle differentiation,we examined the influence of 2,400 chemicals on myogenesis and identified six that expanded muscle progenitors,including three GSK3$\$,two calpain inhibitors,and one adenylyl cyclase activator,forskolin. Forskolin also enhanced proliferation of mouse satellite cells in culture and maintained their ability to engraft muscle in vivo. A combination of bFGF,forskolin,and the GSK3$\$ BIO induced skeletal muscle differentiation in human induced pluripotent stem cells (iPSCs) and produced engraftable myogenic progenitors that contributed to muscle repair in vivo. In summary,these studies reveal functionally conserved pathways regulating myogenesis across species and identify chemical compounds that expand mouse satellite cells and differentiate human iPSCs into engraftable muscle.
View Publication
文献
Schmieder R et al. ( 2013)
Neoplasia 15 10 1161--IN24
Allosteric MEK1/2 Inhibitor Refametinib (BAY 86-9766) in Combination with Sorafenib Exhibits Antitumor Activity in Preclinical Murine and Rat Models of Hepatocellular Carcinoma
OBJECTIVE: The objectives of the study were to evaluate the allosteric mitogen-activated protein kinase kinase (MEK) inhibitor BAY 86-9766 in monotherapy and in combination with sorafenib in orthotopic and subcutaneous hepatocellular carcinoma (HCC) models with different underlying etiologies in two species. DESIGN: Antiproliferative potential of BAY 86-9766 and synergistic effects with sorafenib were studied in several HCC cell lines. Relevant pathway signaling was studied in MH3924a cells. For in vivo testing,the HCC cells were implanted subcutaneously or orthotopically. Survival and mode of action (MoA) were analyzed. RESULTS: BAY 86-9766 exhibited potent antiproliferative activity in HCC cell lines with half-maximal inhibitory concentration values ranging from 33 to 762 nM. BAY 86-9766 was strongly synergistic with sorafenib in suppressing tumor cell proliferation and inhibiting phosphorylation of the extracellular signal-regulated kinase (ERK). BAY 86-9766 prolonged survival in Hep3B xenografts,murine Hepa129 allografts,and MH3924A rat allografts. Additionally,tumor growth,ascites formation,and serum alpha-fetoprotein levels were reduced. Synergistic effects in combination with sorafenib were shown in Huh-7,Hep3B xenografts,and MH3924A allografts. On the signaling pathway level,the combination of BAY 86-9766 and sorafenib led to inhibition of the upregulatory feedback loop toward MEK phosphorylation observed after BAY 86-9766 monotreatment. With regard to the underlying MoA,inhibition of ERK phosphorylation,tumor cell proliferation,and microvessel density was observed in vivo. CONCLUSION: BAY 86-9766 shows potent single-agent antitumor activity and acts synergistically in combination with sorafenib in preclinical HCC models. These results support the ongoing clinical development of BAY 86-9766 and sorafenib in advanced HCC.
View Publication
文献
Yang L et al. (MAY 2014)
Modern pathology : an official journal of the United States and Canadian Academy of Pathology,Inc 27 5 775--783
ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma.
Invasion and metastasis are the major cause of deaths in patients with esophageal cancer. In this study,we isolated cancer stem-like cells from an esophageal squamous cell carcinoma cell line EC109 based on aldehyde dehydrogenase 1A1 (ALDH1A1),and found that ALDH1A1(high) cells possessed the capacities of self-renewal,differentiation and tumor initiation,indications of stem cell properties. To support their stemness,ALDH1A1(high) cells exhibited increased potential of invasion and metastasis as compared with ALDH1A1(low) cells. ALDH1A1(high) esophageal squamous cell carcinoma cells expressed increased levels of mRNA for vimentin,matrix metalloproteinase 2,7 and 9 (MMP2,MMP7 and MMP9),but decreased the level of E-cadherin mRNA,suggesting that epithelial-mesenchymal transition and secretary MMPs may be attributed to the high invasive and metastatic capabilities of ALDH1A1(high) cells. Furthermore,we examined esophageal squamous cell carcinoma specimens from 165 patients and found that ALDH1A1(high) cells were associated with esophageal squamous dysplasia and the grades,differentiation and invasion depth,lymph node metastasis and UICC stage of esophageal squamous cell carcinoma,as well as poor prognosis of patients. Our results provide the strong evidence that ALDH1A1(high) cancer stem-like cells contribute to the invasion,metastasis and poor outcome of human esophageal squamous cell carcinoma.
View Publication
Temporal impact of substrate mechanics on differentiation of human embryonic stem cells to cardiomyocytes
A significant clinical need exists to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes,enabling tissue modeling for in vitro discovery of new drugs or cell-based therapies for heart repair in vivo. Chemical and mechanical microenvironmental factors are known to impact the efficiency of stem cell differentiation,but cardiac differentiation protocols in hPSCs are typically performed on rigid tissue culture polystyrene (TCPS) surfaces,which do not present a physiological mechanical setting. To investigate the temporal effects of mechanics on cardiac differentiation,we cultured human embryonic stem cells (hESCs) and their derivatives on polyacrylamide hydrogel substrates with a physiologically relevant range of stiffnesses. In directed differentiation and embryoid body culture systems,differentiation of hESCs to cardiac troponin T-expressing (cTnT+) cardiomyocytes peaked on hydrogels of intermediate stiffness. Brachyury expression also peaked on intermediate stiffness hydrogels at day 1 of directed differentiation,suggesting that stiffness impacted the initial differentiation trajectory of hESCs to mesendoderm. To investigate the impact of substrate mechanics during cardiac specification of mesodermal progenitors,we initiated directed cardiomyocyte differentiation on TCPS and transferred cells to hydrogels at the Nkx2.5/Isl1+ cardiac progenitor cell stage. No differences in cardiomyocyte purity with stiffness were observed on day 15. These experiments indicate that differentiation of hESCs is sensitive to substrate mechanics at early stages of mesodermal induction,and proper application of substrate mechanics can increase the propensity of hESCs to differentiate to cardiomyocytes. textcopyright 2013 Acta Materialia Inc.
View Publication
文献
Tata PR et al. (NOV 2013)
Nature 503 7475 218--23
Dedifferentiation of committed epithelial cells into stem cells in vivo.
Cellular plasticity contributes to the regenerative capacity of plants,invertebrates,teleost fishes and amphibians. In vertebrates,differentiated cells are known to revert into replicating progenitors,but these cells do not persist as stable stem cells. Here we present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. After the ablation of airway stem cells,we observed a surprising increase in the proliferation of committed secretory cells. Subsequent lineage tracing demonstrated that the luminal secretory cells had dedifferentiated into basal stem cells. Dedifferentiated cells were morphologically indistinguishable from stem cells and they functioned as well as their endogenous counterparts in repairing epithelial injury. Single secretory cells clonally dedifferentiated into multipotent stem cells when they were cultured ex vivo without basal stem cells. By contrast,direct contact with a single basal stem cell was sufficient to prevent secretory cell dedifferentiation. In analogy to classical descriptions of amphibian nuclear reprogramming,the propensity of committed cells to dedifferentiate is inversely correlated to their state of maturity. This capacity of committed cells to dedifferentiate into stem cells may have a more general role in the regeneration of many tissues and in multiple disease states,notably cancer.
View Publication