E. Lin-Shiao et al. (feb 2022)
Nucleic acids research 50 3 1256--1268
CRISPR-Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells.
DNA nanostructures are a promising tool to deliver molecular payloads to cells. DNA origami structures,where long single-stranded DNA is folded into a compact nanostructure,present an attractive approach to package genes; however,effective delivery of genetic material into cell nuclei has remained a critical challenge. Here,we describe the use of DNA nanostructures encoding an intact human gene and a fluorescent protein encoding gene as compact templates for gene integration by CRISPR-mediated homology-directed repair (HDR). Our design includes CRISPR-Cas9 ribonucleoprotein binding sites on DNA nanostructures to increase shuttling into the nucleus. We demonstrate efficient shuttling and genomic integration of DNA nanostructures using transfection and electroporation. These nanostructured templates display lower toxicity and higher insertion efficiency compared to unstructured double-stranded DNA templates in human primary cells. Furthermore,our study validates virus-like particles as an efficient method of DNA nanostructure delivery,opening the possibility of delivering nanostructures in vivo to specific cell types. Together,these results provide new approaches to gene delivery with DNA nanostructures and establish their use as HDR templates,exploiting both their design features and their ability to encode genetic information. This work also opens a door to translate other DNA nanodevice functions,such as biosensing,into cell nuclei.
View Publication
文献
J. D. Kraft et al. (mar 2022)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 36 3 e22173
Lipoxins modulate neutrophil oxidative burst, integrin expression and lymphatic transmigration differentially in human health and atherosclerosis.
Dysregulated chronic inflammation plays a crucial role in the pathophysiology of atherosclerosis and may be a result of impaired resolution. Thus,restoring levels of specialized pro-resolving mediators (SPMs) to promote the resolution of inflammation has been proposed as a therapeutic strategy for patients with atherosclerosis,in addition to standard clinical care. Herein,we evaluated the effects of the SPM lipids,lipoxin A4 (LXA4 ) and lipoxin B4 (LXB4 ),on neutrophils isolated from patients with atherosclerosis compared with healthy controls. Patients displayed altered endogenous SPM production,and we demonstrated that lipoxin treatment in whole blood from atherosclerosis patients attenuates neutrophil oxidative burst,a key contributor to atherosclerotic development. We found the opposite effect in neutrophils from healthy controls,indicating a potential mechanism whereby lipoxins aid the endogenous neutrophil function in health but reduce its excessive activation in disease. We also demonstrated that lipoxins attenuated upregulation of the high-affinity conformation of the CD11b/CD18 integrin,which plays a central role in clot activation and atherosclerosis. Finally,LXB4 enhanced lymphatic transmigration of human neutrophils isolated from patients with atherosclerosis. This finding is noteworthy,as impaired lymphatic function is now recognized as an important contributor to atherosclerosis. Although both lipoxins modulated neutrophil function,LXB4 displayed more potent effects than LXA4 in humans. This study highlights the therapeutic potential of lipoxins in atherosclerotic disease and demonstrates that the effect of these SPMs may be specifically tailored to the need of the individual.
View Publication
文献
T. H. Ho et al. (apr 2022)
Human immunology 83 4 281--294
Identification of a CD4+ T cell line with Treg-like activity.
Regulatory T cells (Tregs) suppress adaptive immunity and inflammation. Although they play a role in suppressing anti-tumor responses,development of therapeutics that target Tregs is limited by their low abundance,heterogeneity,and lack of specific cell surface markers. We isolated human PBMC-derived CD4+ CD25high Foxp3+ Tregs and demonstrate they suppress stimulated CD4+ PBMCs in a cell contact-dependent manner. Because it is not possible to functionally characterize cells after intracellular Foxp3 staining,we identified a human T cell line,MoT,as a model of human Foxp3+ Tregs. Unlike Jurkat T cells,MoT cells share common surface markers consistent with human PBMC-derived Tregs such as: CD4,CD25,GITR,LAG-3,PD-L1,CCR4. PBMC-derived Tregs and MoT cells,but not Jurkat cells,inhibited proliferation of human CD4+PBMCs in a ratio-dependent manner. Transwell membrane separation prevented suppression of stimulated CD4+PBMC proliferation by MoT cells and Tregs,suggesting cell-cell contact is required for suppressive activity. Blocking antibodies against PD-L1,LAG-3,GITR,CCR4,HLA-DR,or CTLA-4 did not reverse the suppressive activity.We show that human PBMC-derived Tregs and MoT cells suppress stimulated CD4+PBMCs in a cell contact-dependent manner,suggesting that a Foxp3+Treg population suppresses immune responses by an uncharacterized cell contact-dependent mechanism.
View Publication
文献
M. G. Booty et al. (feb 2022)
Journal of immunology (Baltimore,Md. : 1950) 208 4 929--940
Microfluidic Squeezing Enables MHC Class I Antigen Presentation by Diverse Immune Cells to Elicit CD8+ T Cell Responses with Antitumor Activity.
CD8+ T cell responses are the foundation of the recent clinical success of immunotherapy in oncologic indications. Although checkpoint inhibitors have enhanced the activity of existing CD8+ T cell responses,therapeutic approaches to generate Ag-specific CD8+ T cell responses have had limited success. Here,we demonstrate that cytosolic delivery of Ag through microfluidic squeezing enables MHC class I presentation to CD8+ T cells by diverse cell types. In murine dendritic cells (DCs),squeezed DCs were ˆ¼1000-fold more potent at eliciting CD8+ T cell responses than DCs cross-presenting the same amount of protein Ag. The approach also enabled engineering of less conventional APCs,such as T cells,for effective priming of CD8+ T cells in vitro and in vivo. Mixtures of immune cells,such as murine splenocytes,also elicited CD8+ T cell responses in vivo when squeezed with Ag. We demonstrate that squeezing enables effective MHC class I presentation by human DCs,T cells,B cells,and PBMCs and that,in clinical scale formats,the system can squeeze up to 2 billion cells per minute. Using the human papillomavirus 16 (HPV16) murine model,TC-1,we demonstrate that squeezed B cells,T cells,and unfractionated splenocytes elicit antitumor immunity and correlate with an influx of HPV-specific CD8+ T cells such that >80% of CD8s in the tumor were HPV specific. Together,these findings demonstrate the potential of cytosolic Ag delivery to drive robust CD8+ T cell responses and illustrate the potential for an autologous cell-based vaccine with minimal turnaround time for patients.
View Publication
文献
R. Sakemura et al. (jun 2022)
Blood 139 26 3708--3721
Targeting cancer-associated fibroblasts in the bone marrow prevents resistance to CART-cell therapy in multiple myeloma.
Pivotal clinical trials of B-cell maturation antigen-targeted chimeric antigen receptor T (CART)-cell therapy in patients with relapsed/refractory multiple myeloma (MM) resulted in remarkable initial responses,which led to a recent US Food and Drug Administration approval. Despite the success of this therapy,durable remissions continue to be low,and the predominant mechanism of resistance is loss of CART cells and inhibition by the tumor microenvironment (TME). MM is characterized by an immunosuppressive TME with an abundance of cancer-associated fibroblasts (CAFs). Using MM models,we studied the impact of CAFs on CART-cell efficacy and developed strategies to overcome CART-cell inhibition. We showed that CAFs inhibit CART-cell antitumor activity and promote MM progression. CAFs express molecules such as fibroblast activation protein and signaling lymphocyte activation molecule family-7,which are attractive immunotherapy targets. To overcome CAF-induced CART-cell inhibition,CART cells were generated targeting both MM cells and CAFs. This dual-targeting CART-cell strategy significantly improved the effector functions of CART cells. We show for the first time that dual targeting of both malignant plasma cells and the CAFs within the TME is a novel strategy to overcome resistance to CART-cell therapy in MM.
View Publication
文献
N. Balneger et al. (jan 2022)
Cellular and molecular life sciences : CMLS 79 2 98
Sialic acid blockade in dendritic cells enhances CD8+ T cell responses by facilitating high-avidity interactions.
Sialic acids are negatively charged carbohydrates that cap the glycans of glycoproteins and glycolipids. Sialic acids are involved in various biological processes including cell-cell adhesion and immune recognition. In dendritic cells (DCs),the major antigen-presenting cells of the immune system,sialic acids emerge as important regulators of maturation and interaction with other lymphocytes including T cells. Many aspects of how sialic acids regulate DC functions are not well understood and tools and model systems to address these are limited. Here,we have established cultures of murine bone marrow-derived DCs (BMDCs) that lack sialic acid expression using a sialic acid-blocking mimetic Ac53FaxNeu5Ac. Ac53FaxNeu5Ac treatment potentiated BMDC activation via toll-like receptor (TLR) stimulation without affecting differentiation and viability. Sialic acid blockade further increased the capacity of BMDCs to induce antigen-specific CD8+ T cell proliferation. Transcriptome-wide gene expression analysis revealed that sialic acid mimetic treatment of BMDCs induces differential expression of genes involved in T cell activation,cell-adhesion,and cell-cell interactions. Subsequent cell clustering assays and single cell avidity measurements demonstrated that BMDCs with reduced sialylation form higher avidity interactions with CD8+ T cells. This increased avidity was detectable in the absence of antigens,but was especially pronounced in antigen-dependent interactions. Together,our data show that sialic acid blockade in BMDCs ameliorates maturation and enhances both cognate T cell receptor-MHC-dependent and independent T cell interactions that allow for more robust CD8+ T cell responses.
View Publication
文献
D. Klewinghaus et al. ( 2021)
Frontiers in immunology 12 801368
Grabbing the Bull by Both Horns: Bovine Ultralong CDR-H3 Paratopes Enable Engineering of 'Almost Natural' Common Light Chain Bispecific Antibodies Suitable For Effector Cell Redirection.
A subset of antibodies found in cattle comprises ultralong CDR-H3 regions of up to 70 amino acids. Interestingly,this type of immunoglobulin usually pairs with the single germline VL gene,V30 that is typically very conserved in sequence. In this work,we have engineered ultralong CDR-H3 common light chain bispecific antibodies targeting Epidermal Growth Factor Receptor (EGFR) on tumor cells as well as Natural Cytotoxicity Receptor NKp30 on Natural Killer (NK) cells. Antigen-specific common light chain antibodies were isolated by yeast surface display by means of pairing CDR-H3 diversities following immunization with a single V30 light chain. After selection,EGFR-targeting paratopes as well as NKp30-specific binders were combined into common light chain bispecific antibodies by exploiting the strand-exchange engineered domain (SEED) technology for heavy chain heterodimerization. Biochemical characterization of resulting bispecifics revealed highly specific binding to the respective antigens as well as simultaneous binding to both targets. Most importantly,engineered cattle-derived bispecific common light chain molecules elicited potent NK cell redirection and consequently tumor cell lysis of EGFR-overexpressing cells as well as robust release of proinflammatory cytokine interferon-$\gamma$. Taken together,this data is giving clear evidence that bovine bispecific ultralong CDR-H3 common light chain antibodies are versatile for biotechnological applications.
View Publication
文献
S. Adamia et al. (apr 2022)
Leukemia 36 4 1088--1101
Combination therapy targeting Erk1/2 and CDK4/6i in relapsed refractory multiple myeloma.
Oncogenic activated RAS mutations have been detected in 50% of de novo and 70% of relapsed multiple myeloma (MM) patients. Translocation t(11;14) involving IgH/CCDN1 and overexpression of cyclin-Ds are early events in MM pathogenesis,enhancing uncontrolled MM cell growth. We hypothesized that targeting both RAS/MAPK pathway molecules including Erk1/2 along with cyclin-Ds enhances MM cytotoxicity and minimizes side effects. Recent studies have demonstrated the high potency of Erk1/2 and CDK4/6 inhibitors in metastatic relapsed cancers,and here we tested anti-MM effects of the Erk1/2??+??CDK4/6 inhibitor combination. Our studies showed strong synergistic (IC???0.5) cytotoxicity of Erk1/2i??+??CDK4/6i in MM-cells. Erk1/2i??+??CDK4/6i treatment in a dose-dependent manner arrested MM-cells in the G0/G1 phase and activated mitochondrial apoptotic signaling. Our studies showed that Erk1/2i??+??CDK4/6i treatment-induced inhibition of key target molecules in Erk1/2 and CDK4/6 signaling,such as c-myc,p-RSK,p-S6,p-RB,and E2F1,suggesting on-target activity of these inhibitors. We identified Erk1/2i??+??CDK4/6i treatment associated five-gene signature which includes SNRPB and SLC25A5; these genes are involved in RNA processing and mitochondrial metabolism,respectively. Overall,our studies provide the preclinical framework for Erk1/2i??+??CDK4/6i combination clinical trials to target Ras+CDK pathways to improve patient outcome in MM.
View Publication
文献
N. Allende-Vega et al. (jan 2022)
Scientific reports 12 1 1341
Metformin sensitizes leukemic cells to cytotoxic lymphocytes by increasing expression of intercellular adhesion molecule-1 (ICAM-1).
Solid tumor cells have an altered metabolism that can protect them from cytotoxic lymphocytes. The anti-diabetic drug metformin modifies tumor cell metabolism and several clinical trials are testing its effectiveness for the treatment of solid cancers. The use of metformin in hematologic cancers has received much less attention,although allogeneic cytotoxic lymphocytes are very effective against these tumors. We show here that metformin induces expression of Natural Killer G2-D (NKG2D) ligands (NKG2DL) and intercellular adhesion molecule-1 (ICAM-1),a ligand of the lymphocyte function-associated antigen 1 (LFA-1). This leads to enhance sensitivity to cytotoxic lymphocytes. Overexpression of anti-apoptotic Bcl-2 family members decrease both metformin effects. The sensitization to activated cytotoxic lymphocytes is mainly mediated by the increase on ICAM-1 levels,which favors cytotoxic lymphocytes binding to tumor cells. Finally,metformin decreases the growth of human hematological tumor cells in xenograft models,mainly in presence of monoclonal antibodies that recognize tumor antigens. Our results suggest that metformin could improve cytotoxic lymphocyte-mediated therapy.
View Publication
文献
S. Bezstarosti et al. ( 2021)
Frontiers in immunology 12 761893
HLA-DQ-Specific Recombinant Human Monoclonal Antibodies Allow for In-Depth Analysis of HLA-DQ Epitopes.
HLA-DQ donor-specific antibodies (DSA) are the most prevalent type of DSA after renal transplantation and have been associated with eplet mismatches between donor and recipient HLA. Eplets are theoretically defined configurations of surface exposed amino acids on HLA molecules that require verification to confirm that they can be recognized by alloantibodies and are therefore clinically relevant. In this study,we isolated HLA-DQ specific memory B cells from immunized individuals by using biotinylated HLA-DQ monomers to generate 15 recombinant human HLA-DQ specific monoclonal antibodies (mAb) with six distinct specificities. Single antigen bead reactivity patterns were analyzed with HLA-EMMA to identify amino acids that were uniquely shared by the reactive HLA alleles to define functional epitopes which were mapped to known eplets. The HLA-DQB1*03:01-specific mAb LB_DQB0301_A and the HLA-DQB1*03-specific mAb LB_DQB0303_C supported the antibody-verification of eplets 45EV and 55PP respectively,while mAbs LB_DQB0402_A and LB_DQB0602_B verified eplet 55R on HLA-DQB1*04/05/06. For three mAbs,multiple uniquely shared amino acid configurations were identified,warranting further studies to define the inducing functional epitope and corresponding eplet. Our unique set of HLA-DQ specific mAbs will be further expanded and will facilitate the in-depth analysis of HLA-DQ epitopes,which is relevant for further studies of HLA-DQ alloantibody pathogenicity in transplantation.
View Publication
文献
X. Li et al. (jan 2022)
ImmunoHorizons 6 1 64--75
IL-23 Promotes Neutrophil Extracellular Trap Formation and Bacterial Clearance in a Mouse Model of Alcohol and Burn Injury.
Our previous studies have shown that ethanol intoxication combined with burn injury increases intestinal bacterial growth,disrupts the intestinal barrier,and enhances bacterial translocation. Additionally,studies show that Th17 effector cytokines IL-17 and IL-22,which are dependent on IL-23,play important roles in maintaining intestine mucosal barrier integrity. Recent findings suggest neutrophils are a significant source of IL-17 and IL-22. We determined the effect of ethanol and burn injury on neutrophil IL-17 and IL-22 production,as well as their ability to phagocytose and in bacterial clearance,and whether these effects are modulated by IL-23. Mice were given ethanol 4 h prior to receiving ˆ¼12.5% total body surface area burn and were euthanized day 1 after injury. We observed that intoxication combined with burn injury significantly decreases blood neutrophil phagocytosis and bacteria killing,as well as their ability to produce IL-17 and IL-22,compared with sham vehicle mice. The treatment of neutrophils with rIL-23 significantly increases IL-22 and IL-17 release and promotes expression of IL-23R,retinoic acid-related orphan receptor $\gamma$t,Lipocalin2,and Nod-like receptor 2 following ethanol and burn injury. Furthermore,IL-22- and IL-17-producing neutrophils have enhanced neutrophil extracellular trap formation and bacterial killing ability,which are dependent on IL-23. Finally,although we observed that peritoneal neutrophils harvested after casein treatment are functionally different from blood neutrophils,both blood and peritoneal neutrophils exhibited the same response to rIL-23 treatment. Together these findings suggest that IL-23 promotes neutrophil IL-22 and IL-17 production and their ability to kill bacteria following ethanol and burn injury.
View Publication
文献
X. Wang et al. (apr 2022)
Leukemia 36 4 1015--1024
CD19/BAFF-R dual-targeted CAR T cells for the treatment of mixed antigen-negative variants of acute lymphoblastic leukemia.
Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent antitumor effects in B-cell malignancies including acute lymphoblastic leukemia (ALL),but antigen loss remains the major cause of treatment failure. To mitigate antigen escape and potentially improve the durability of remission,we developed a dual-targeting approach using an optimized,bispecific CAR construct that targets both CD19 and BAFF-R. CD19/BAFF-R dual CAR T cells exhibited antigen-specific cytokine release,degranulation,and cytotoxicity against both CD19-/- and BAFF-R-/- variant human ALL cells in vitro. Immunodeficient mice engrafted with mixed CD19-/- and BAFF-R-/- variant ALL cells and treated with a single dose of CD19/BAFF-R dual CAR T cells experienced complete eradication of both CD19-/- and BAFF-R-/- ALL variants,whereas mice treated with monospecific CD19 or BAFF-R CAR T cells succumbed to outgrowths of CD19-/BAFF-R+ or CD19+/BAFF-R- tumors,respectively. Further,CD19/BAFF-R dual CAR T cells showed prolonged in vivo persistence,raising the possibility that these cells may have the potential to promote durable remissions. Together,our data support clinical translation of BAFF-R/CD19 dual CAR T cells to treat ALL.
View Publication