Tareen SU et al. (MAR 2014)
Molecular therapy : the journal of the American Society of Gene Therapy 22 3 575--87
Design of a novel integration-deficient lentivector technology that incorporates genetic and posttranslational elements to target human dendritic cells.
As sentinels of the immune system,dendritic cells (DCs) play an essential role in regulating cellular immune responses. One of the main challenges of developing DC-targeted therapies includes the delivery of antigen to DCs in order to promote the activation of antigen-specific effector CD8 T cells. With the goal of creating antigen-directed immunotherapeutics that can be safely administered directly to patients,Immune Design has developed a platform of novel integration-deficient lentiviral vectors that target and deliver antigen-encoding nucleic acids to human DCs. This platform,termed ID-VP02,utilizes a novel genetic variant of a Sindbis virus envelope glycoprotein with posttranslational carbohydrate modifications in combination with Vpx,a SIVmac viral accessory protein,to achieve efficient targeting and transduction of human DCs. In addition,ID-VP02 incorporates safety features in its design that include two redundant mechanisms to render ID-VP02 integration-deficient. Here,we describe the characteristics that allow ID-VP02 to specifically transduce human DCs,and the advances that ID-VP02 brings to conventional third-generation lentiviral vector design as well as demonstrate upstream production yields that will enable manufacturing feasibility studies to be conducted.
View Publication
文献
Bershteyn M et al. (MAR 2014)
Nature 507 7490 99--103
Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells.
Ring chromosomes are structural aberrations commonly associated with birth defects,mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome,and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes,no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division,ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations,enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of /`chromosome therapy/' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition,our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control,which is of critical relevance to human development and disease.
View Publication
文献
Loh KM et al. (JAN 2014)
Cell Stem Cell 14 2 237--252
Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations
Human pluripotent stem cell (hPSC) differentiation typically yields heterogeneous populations. Knowledge of signals controlling embryonic lineage bifurcations could efficiently yield desired cell types through exclusion of alternate fates. Therefore,we revisited signals driving induction and anterior-posterior patterning of definitive endoderm to generate a coherent roadmap for endoderm differentiation. With striking temporal dynamics,BMP and Wnt initially specified anterior primitive streak (progenitor to endoderm),yet,24 hr later,suppressed endoderm and induced mesoderm. At lineage bifurcations,cross-repressive signals separated mutually exclusive fates; TGF-?? and BMP/MAPK respectively induced pancreas versus liver from endoderm by suppressing the alternate lineage. We systematically blockaded alternate fates throughout multiple consecutive bifurcations,thereby efficiently differentiating multiple hPSC lines exclusively into endoderm and its derivatives. Comprehensive transcriptional and chromatin mapping of highly pure endodermal populations revealed that endodermal enhancers existed in a surprising diversity of pre-enhancer" states before activation�
View Publication
文献
Gasimli L et al. (JUN 2014)
Biochimica et Biophysica Acta (BBA) - General Subjects 1840 6 1993--2003
Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages
Background Proteoglycans are found on the cell surface and in the extracellular matrix,and serve as prime sites for interaction with signaling molecules. Proteoglycans help regulate pathways that control stem cell fate,and therefore represent an excellent tool to manipulate these pathways. Despite their importance,there is a dearth of data linking glycosaminoglycan structure within proteoglycans with stem cell differentiation. Methods Human embryonic stem cell line WA09 (H9) was differentiated into early mesoderm and endoderm lineages,and the glycosaminoglycanomic changes accompanying these transitions were studied using transcript analysis,immunoblotting,immunofluorescence and disaccharide analysis. Results Pluripotent H9 cell lumican had no glycosaminoglycan chains whereas in splanchnic mesoderm lumican was glycosaminoglycanated. H9 cells have primarily non-sulfated heparan sulfate chains. On differentiation towards splanchnic mesoderm and hepatic lineages N-sulfo group content increases. Differences in transcript expression of NDST1,HS6ST2 and HS6ST3,three heparan sulfate biosynthetic enzymes,within splanchnic mesoderm cells compared to H9 cells correlate to changes in glycosaminoglycan structure. Conclusions Differentiation of embryonic stem cells markedly changes the proteoglycanome. General significance The glycosaminoglycan biosynthetic pathway is complex and highly regulated,and therefore,understanding the details of this pathway should enable better control with the aim of directing stem cell differentiation. ?? 2014 Elsevier B.V. All rights reserved.
View Publication
文献
Lu HF et al. (MAR 2014)
Biomaterials 35 9 2816--2826
A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells
A defined xeno-free system for patient-specific iPSC derivation and differentiation is required for translation to clinical applications. However,standard somatic cell reprogramming protocols rely on using MEFs and xenogeneic medium,imposing a significant obstacle to clinical translation. Here,we describe a well-defined culture system based on xeno-free media and LN521 substrate which supported i) efficient reprogramming of normal or diseased skin fibroblasts from human of different ages into hiPSCs with a 15-30 fold increase in efficiency over conventional viral vector-based method; ii) long-term self-renewal of hiPSCs; and iii) direct hiPSC lineage-specific differentiation. Using an excisable polycistronic vector and optimized culture conditions,we achieved up to 0.15%-0.3% reprogramming efficiencies. Subsequently,transgene-free hiPSCs were obtained by Cre-mediated excision of the reprogramming factors. The derived iPSCs maintained long-term self-renewal,normal karyotype and pluripotency,as demonstrated by the expression of stem cell markers and ability to form derivatives of three germ layers both in vitro and in vivo. Importantly,we demonstrated that Parkinson's patient transgene-free iPSCs derived using the same system could be directed towards differentiation into dopaminergic neurons under xeno-free culture conditions. Our approach provides a safe and robust platform for the generation of patient-specific iPSCs and derivatives for clinical and translational applications. textcopyright 2013 Elsevier Ltd.
View Publication
文献
Narytnyk A et al. (APR 2014)
Stem cell reviews 10 2 316--26
Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons.
Here we provide a protocol for the directed differentiation of hEPI-NCSC into midbrain dopaminergic neurons,which degenerate in Parkinson's disease. hEPI-NCSC are neural crest-derived multipotent stem cells that persist into adulthood in the bulge of hair follicles. The experimental design is distinctly different from conventional protocols for embryonic stem cells and induced pluripotent stem (iPS) cells. It includes pre-differentiation of the multipotent hEPI-NCSC into neural stem cell-like cells,followed by ventralizing,patterning,continued exposure to the TGFβ receptor inhibitor,SB431542,and at later stages of differentiation the presence of the WNT inhibitor,IWP-4. All cells expressed A9 midbrain dopaminergic neuron progenitor markers with gene expression levels comparable to those in normal human substantia nigra. The current study shows for the first time that virtually homogeneous populations of dopaminergic neurons can be derived ex vivo from somatic stem cells without the need for purification,with useful timeliness and high efficacy. This novel development is an important first step towards the establishment of fully functional dopaminergic neurons from an ontologically relevant stem cell type,hEPI-NCSC.
View Publication
文献
Sokolov M and Neumann R ( 2014)
International Journal of Molecular Sciences 15 1 588--604
Effects of low doses of ionizing radiation exposures on stress-responsive gene expression in human embryonic stem cells
There is a great deal of uncertainty on how low (≤ 0.1 Gy) doses of ionizing radiation (IR) affect human cells,partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests' radiation,natural background radiation,and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types,we established a novel,human embryonic stem cell (hESC)-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and,as a reference,relatively high dose of 1 Gy of IR. Here,we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes,including CDKN1A,GADD45A,etc. at 2 and 16 h post-IR,representing early" and "late" radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures."
View Publication
文献
Sproul Aa et al. (JAN 2014)
Acta Neuropathologica Communications 2 1 4
Generation of iPSC lines from archived non-cryoprotected biobanked dura mater
Induced pluripotent stem cells (iPSCs) derived from patients with neurodegenerative disease generally lack neuropathological confirmation,the gold standard for disease classification and grading of severity. The use of tissue with a definitive neuropathological diagnosis would be an ideal source for iPSCs. The challenge to this approach is that the majority of biobanked brain tissue was not meant for growing live cells,and thus was not frozen in the presence of cryoprotectants such as DMSO. PMID: 24398250
View Publication
文献
Zhang L et al. (MAR 2014)
Cell cycle (Georgetown,Tex.) 13 5 762--71
Inhibition of stearoyl-coA desaturase selectively eliminates tumorigenic Nanog-positive cells: improving the safety of iPS cell transplantation to myocardium.
Induced pluripotent stem cells (iPS) can differentiate into cardiomyocytes (CM) and represent a promising form of cellular therapy for heart regeneration. However,residual undifferentiated iPS derivates (iPSD),which are not fully eliminated by cell differentiation or purification protocols,may form tumors after transplantation,thus compromising therapeutic application. Inhibition of stearoyl-coA desaturase (SCD) has recently been reported to eliminate undifferentiated human embryonic stem cells,which share many features with iPSD. Here,we tested the effects of PluriSin1,a small-molecule inhibitor of SCD,on iPS-derived CM. We found that plurisin1 treatment significantly decreased the mRNA and protein level of Nanog,a marker for both cell pluripotency and tumor progression; importantly,we provide evidence that PluriSin1 treatment at 20 µM for 1 day significantly induces the apoptosis of Nanog-positive iPSD. In addition,PluriSin1 treatment at 20 µM for 4 days diminished Nanog-positive stem cells in cultured iPSD while not increasing apoptosis of iPS-derived CM. To investigate whether PluriSin1 treatment prevents tumorigenicity of iPSD after cell transplantation,we intramyocardially injected PluriSin1- or DMSO-treated iPSD in a mouse model of myocardial infarction (MI). DMSO-treated iPSD readily formed Nanog-expressing tumors 2 weeks after injection,which was prevented by treatment with PluriSin1. Moreover,treatment with PluriSin1 did not change the expression of cTnI,α-MHC,or MLC-2v,markers of cardiac differentiation (Ptextgreater0.05,n = 4). Importantly,pluriSin1-treated iPS-derived CM exhibited the ability to engraft and survive in the infarcted myocardium. We conclude that inhibition of SCD holds the potential to enhance the safety of therapeutic application of iPS cells for heart regeneration.
View Publication
文献
Long T et al. (MAR 2014)
Biomaterials 35 9 2752--9
The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice.
Structural bone allografts are widely used in the clinic to treat critical sized bone defects,despite lacking the osteoinductive characteristics of live autografts. To address this,we generated revitalized structural allografts wrapped with mesenchymal stem/progenitor cell (MSC) sheets,which were produced by expanding primary syngenic bone marrow derived cells on temperature-responsive plates,as a tissue-engineered periosteum. In vitro assays demonstrated maintenance of the MSC phenotype in the sheets,suggesting that short-term culturing of MSC sheets is not detrimental. To test their efficacy in vivo,allografts wrapped with MSC sheets were transplanted into 4-mm murine femoral defects and compared to allografts with direct seeding of MSCs and allografts without cells. Evaluations consisted of X-ray plain radiography,3D microCT,histology,and biomechanical testing at 4- and 6-weeks post-surgery. Our findings demonstrate that MSC sheets induce prolonged cartilage formation at the graft-host junction and enhanced bone callus formation,as well as graft-host osteointegration. Moreover,a large periosteal callus was observed spanning the allografts with MSC sheets,which partially mimics live autograft healing. Finally,biomechanical testing showed a significant increase in the structural and functional properties of MSC sheet grafted femurs. Taken together,MSC sheets exhibit enhanced osteogenicity during critical sized bone defect repair,demonstrating the feasibility of this tissue engineering solution for massive allograft healing.
View Publication
文献
Srinivasakumar N et al. (DEC 2013)
PeerJ 1 e224
Gammaretroviral vector encoding a fluorescent marker to facilitate detection of reprogrammed human fibroblasts during iPSC generation.
Induced pluripotent stem cells (iPSCs) are becoming mainstream tools to study mechanisms of development and disease. They have a broad range of applications in understanding disease processes,in vitro testing of novel therapies,and potential utility in regenerative medicine. Although the techniques for generating iPSCs are becoming more straightforward,scientists can expend considerable resources and time to establish this technology. A major hurdle is the accurate determination of valid iPSC-like colonies that can be selected for further cloning and characterization. In this study,we describe the use of a gammaretroviral vector encoding a fluorescent marker,mRFP1,to not only monitor the efficiency of initial transduction but also to identify putative iPSC colonies through silencing of mRFP1 gene as a consequence of successful reprogramming.
View Publication
文献
Zhang M et al. (APR 2014)
Cancer 120 7 992--1001
Elevated intrinsic cancer stem cell population in human papillomavirus-associated head and neck squamous cell carcinoma.
BACKGROUND Human papillomavirus 16 (HPV16) is a major risk factor for the development of head and neck squamous cell carcinoma (HNSCC),particularly the development of oropharyngeal squamous cell carcinoma (OPSCC). Cancer stem cells (CSCs) are resistant to conventional therapies,and it is postulated that they are responsible for disease recurrence and/or progression. Because the prognoses of patients with HPV16-positive and HPV-negative HNSCC are distinct,the authors sought to determine whether differences in the number of CSCs could account for this clinical observation. METHODS CSC populations in HPV16-positive and HPV-negative HNSCC were assessed using a proprietary assay based on expression of the enzyme aldehyde dehydrogenase (ALDH),an in vitro tumorsphere formation assay,and an in vivo limiting cell dilution in nonobese diabetic/severe combined immunodeficiency mice. A high-density tissue microarray was stained with ALDH1,a CSC marker,to determine the association between CSCs and HPV16-positive/HPV-negative OPSCC. RESULTS HPV16-positive HNSCC had a greater intrinsic CSC pool than HPV-negative HNSCC. Inactivation of p53 has been identified as a major mechanism for the elevated CSC population in HPV16-positive HNSCC. In vivo limiting cell dilution experiments using tumors from patients with HPV16-positive and HPV-negative OPSCC indicated that the CSC frequency was 62.5-fold greater in an HPV16-positive OPSCC tumor than in an HPV-negative OPSCC tumor. Primary tumors from patients with HPV16-positive OPSCC were associated with elevated tumor ALDH1 staining,further extending the association between HPV16 and CSCs. CONCLUSIONS The current data and the clinical observation that patients with HPV16-positive HNSCC respond more favorably to current treatment paradigms than patients with HPV-negative HNSCC support the suggestion that CSC phenotype is not homogeneous. Therefore,the reliance on the CSC number may be insufficient to accurately assess the potential of a particular tumor for disease recurrence and/or progression.
View Publication