Beckerman SR et al. (SEP 2015)
ASSAY and Drug Development Technologies 13 7 377--388
Phenotypic Assays to Identify Agents That Induce Reactive Gliosis: A Counter-Screen to Prioritize Compounds for Preclinical Animal Studies
Astrocyte phenotypes change in a process called reactive gliosis after traumatic central nervous system (CNS) injury. Astrogliosis is characterized by expansion of the glial fibrillary acidic protein (GFAP) cytoskeleton,adoption of stellate morphologies,and differential expression of some extracellular matrix molecules. The astrocytic response immediately after injury is beneficial,but in the chronic injury phase,reactive astrocytes produce inhibitory factors (i.e.,chondroitin sulfate proteoglycans [CSPGs]) that limit the regrowth of injured axons. There are no drugs that promote axon regeneration or functional recovery after CNS trauma in humans. To develop novel therapeutics for the injured CNS,we screened various libraries in a phenotypic assay to identify compounds that promote neurite outgrowth. However,the effects these compounds have on astrocytes are unknown. Specifically,we were interested in whether compounds could alter astrocytes in a manner that mimics the glial reaction to injury. To test this hypothesis,we developed cell-based phenotypic bioassays to measure changes in (1) GFAP morphology/localization and (2) CSPG expression/immunoreactivity from primary astrocyte cultures. These assays were optimized for six-point dose-response experiments in 96-well plates. The GFAP morphology assay is suitable for counter-screening with a Z-factor of 0.44±0.03 (mean±standard error of the mean; N=3 biological replicates). The CSPG assay is reproducible and informative,but does not satisfy common metrics for a screenable" assay. As proof of principle we tested a small set of hit compounds from our neurite outgrowth bioassay and identified one that can enhance axon growth without exacerbating the deleterious characteristics of reactive gliosis.
View Publication
Beamish CA et al. (APR 2016)
Islets 8 3 65--82
Insulin-positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters.
Regeneration of insulin-producing β-cells from resident pancreas progenitors requires an understanding of both progenitor identity and lineage plasticity. One model suggested that a rare β-cell sub-population within islets demonstrated multi-lineage plasticity. We hypothesized that β-cells from young mice (postnatal day 7,P7) exhibit such plasticity and used a model of islet dedifferentiation toward a ductal epithelial-cell phenotype to test this theory. RIPCre;Z/AP(+/+) mice were used to lineage trace the fate of β-cells during dedifferentiation culture by a human placental alkaline phosphatase (HPAP) reporter. There was a significant loss of HPAP-expressing β-cells in culture,but remaining HPAP(+) cells lost insulin expression while gaining expression of the epithelial duct cell marker cytokeratin-19 (Ck19). Flow cytometry and recovery of β-cell subpopulations from whole pancreas vs. islets suggest that the HPAP(+)Ck19(+) cells had derived from insulin-positive,glucose-transporter-2-low (Ins(+)Glut2(LO)) cells,representing 3.5% of all insulin-expressing cells. The majority of these cells were found outside of islets within clusters of <5 β-cells. These insulin(+)Glut2(LO) cells demonstrated a greater proliferation rate in vivo and in vitro as compared to insulin(+)Glut2(+) cells at P7,were retained into adulthood,and a subset differentiated into endocrine,ductal,and neural lineages,illustrating substantial plasticity. Results were confirmed using RIPCre;ROSA- eYFP mice. Quantitative PCR data indicated these cells possess an immature β-cell phenotype. These Ins(+)Glut2(LO) cells may represent a resident population of cells capable of forming new,functional β-cells,and which may be potentially exploited for regenerative therapies in the future.
View Publication
Baud A et al. (FEB 2017)
Analytical chemistry 89 4 2440--2448
Induced pluripotent stem cells have great potential as a human model system in regenerative medicine,disease modeling,and drug screening. However,their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research,only the best,competent clones should be used. The standard assays for pluripotency are based on genomic approaches,which take up to 1 week to perform and incur significant cost. Therefore,there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here,we describe a novel multiplexed,high-throughput,and sensitive peptide-based multiple reaction monitoring mass spectrometry assay,allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.
View Publication
Bartel S et al. (APR 2017)
Scientific reports 7 March 46026
Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma.
Asthma is highly prevalent,but current therapies cannot influence the chronic course of the disease. It is thus important to understand underlying early molecular events. In this study,we aimed to use microRNAs (miRNAs) - which are critical regulators of signaling cascades - to identify so far uncharacterized asthma pathogenesis pathways. Therefore,deregulation of miRNAs was assessed in whole lungs from mice with ovalbumin (OVA)-induced allergic airway inflammation (AAI). In silico predicted target genes were confirmed in reporter assays and in house-dust-mite (HDM) induced AAI and primary human bronchial epithelial cells (NHBE) cultured at the air-liquid interface. We identified and validated the transcription factor cAMP-responsive element binding protein (Creb1) and its transcriptional co-activators (Crtc1-3) as targets of miR-17,miR-144,and miR-21. Sec14-like 3 (Sec14l3) - a putative target of Creb1 - was down-regulated in both asthma models and in NHBE cells upon IL13 treatment,while it's expression correlated with ciliated cell development and decreased along with increasing goblet cell metaplasia. Finally,we propose that Creb1/Crtc1-3 and Sec14l3 could be important for early responses of the bronchial epithelium to Th2-stimuli. This study shows that miRNA profiles can be used to identify novel targets that would be overlooked in mRNA based strategies.
View Publication
Barkal LJ et al. ( 2017)
Nature Communications 8 1
Microbial volatile communication in human organotypic lung models
We inhale respiratory pathogens continuously,and the subsequent signaling events between host and microbe are complex,ultimately resulting in clearance of the microbe,stable colonization of the host,or active disease. Traditional in vitro methods are ill-equipped to study these critical events in the context of the lung microenvironment. Here we introduce a microscale organotypic model of the human bronchiole for studying pulmonary infection. By leveraging microscale techniques,the model is designed to approximate the structure of the human bronchiole,containing airway,vascular,and extracellular matrix compartments. To complement direct infection of the organotypic bronchiole,we present a clickable extension that facilitates volatile compound communication between microbial populations and the host model. Using Aspergillus fumigatus,a respiratory pathogen,we characterize the inflammatory response of the organotypic bronchiole to infection. Finally,we demonstrate multikingdom,volatile-mediated communication between the organotypic bronchiole and cultures of Aspergillus fumigatus and Pseudomonas aeruginosa.
View Publication
Baptista S et al. (SEP 2014)
Stem cell research 13 2 329--41
Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate.
Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact,we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG). Still,little is known regarding its effect on DG stem cell properties. Herein,we investigate the impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10nM) decreased DG stem cell self-renewal,while 1nM delayed cell cycle in the G0/G1-to-S phase transition and increased the number of quiescent cells (G0 phase),which correlated with a decrease in cyclin E,pEGFR and pERK1/2 protein levels. Importantly,both drug concentrations (1 or 10nM) did not induce cell death. In accordance with the impairment of self-renewal capacity,METH (10nM) decreased Sox2(+)/Sox2(+) while increased Sox2(-)/Sox2(-) pairs of daughter cells. This effect relied on N-methyl-d-aspartate (NMDA) signaling,which was prevented by the NMDA receptor antagonist,MK-801 (10μM). Moreover,METH (10nM) increased doublecortin (DCX) protein levels consistent with neuronal differentiation. In conclusion,METH alters DG stem cell properties by delaying cell cycle and decreasing self-renewal capacities,mechanisms that may contribute to DG neurogenesis impairment followed by cognitive deficits verified in METH consumers.
View Publication
Bai M et al. ( 2017)
Blood 130 19 2092--2100
CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation.
CD177 is a glycosylphosphatidylinositol (GPI)-anchored protein expressed by a variable proportion of human neutrophils that mediates surface expression of the antineutrophil cytoplasmic antibody antigen proteinase 3. CD177 associates with β2 integrins and recognizes platelet endothelial cell adhesion molecule 1 (PECAM-1),suggesting a role in neutrophil migration. However,CD177pos neutrophils exhibit no clear migratory advantage in vivo,despite interruption of in vitro transendothelial migration by CD177 ligation. We sought to understand this paradox. Using a PECAM-1-independent transwell system,we found that CD177pos and CD177neg neutrophils migrated comparably. CD177 ligation selectively impaired migration of CD177pos neutrophils,an effect mediated through immobilization and cellular spreading on the transwell membrane. Correspondingly,CD177 ligation enhanced its interaction with β2 integrins,as revealed by fluorescence lifetime imaging microscopy,leading to integrin-mediated phosphorylation of Src and extracellular signal-regulated kinase (ERK). CD177-driven cell activation enhanced surface β2 integrin expression and affinity,impaired internalization of integrin attachments,and resulted in ERK-mediated attenuation of chemokine signaling. We conclude that CD177 signals in a β2 integrin-dependent manner to orchestrate a set of activation-mediated mechanisms that impair human neutrophil migration.
View Publication
Bai H et al. (JAN 2016)
Nature genetics 48 1 59--66
Integrated genomic characterization of IDH1-mutant glioma malignant progression.
Gliomas represent approximately 30% of all central nervous system tumors and 80% of malignant brain tumors. To understand the molecular mechanisms underlying the malignant progression of low-grade gliomas with mutations in IDH1 (encoding isocitrate dehydrogenase 1),we studied paired tumor samples from 41 patients,comparing higher-grade,progressed samples to their lower-grade counterparts. Integrated genomic analyses,including whole-exome sequencing and copy number,gene expression and DNA methylation profiling,demonstrated nonlinear clonal expansion of the original tumors and identified oncogenic pathways driving progression. These include activation of the MYC and RTK-RAS-PI3K pathways and upregulation of the FOXM1- and E2F2-mediated cell cycle transitions,as well as epigenetic silencing of developmental transcription factor genes bound by Polycomb repressive complex 2 in human embryonic stem cells. Our results not only provide mechanistic insight into the genetic and epigenetic mechanisms driving glioma progression but also identify inhibition of the bromodomain and extraterminal (BET) family as a potential therapeutic approach.
View Publication
Badr CE et al. (MAY 2013)
JNCI: Journal of the National Cancer Institute 105 9 643--653
Targeting Cancer Cells With the Natural Compound Obtusaquinone
BACKGROUND Tumor cells present high levels of oxidative stress. Cancer therapeutics exploiting such biochemical changes by increasing reactive oxygen species (ROS) production or decreasing intracellular ROS scavengers could provide a powerful treatment strategy. METHODS To test the effect of our compound,obtusaquinone (OBT),we used several cell viability assays on seven different glioblastoma (GBM) cell lines and primary cells and on 12 different cell lines representing various cancer types in culture as well as on subcutaneous (n = 7 mice per group) and two intracranial GBM (n = 6-8 mice per group) and breast cancer (n = 6 mice per group) tumor models in vivo. Immunoblotting,immunostaining,flow cytometry,and biochemical assays were used to investigate the OBT mechanism of action. Histopathological analysis (n = 2 mice per group) and blood chemistry (n = 2 mice per group) were used to test for any compound-related toxicity. Statistical tests were two-sided. RESULTS OBT induced rapid increase in intracellular ROS levels,downregulation of cellular glutathione levels and increase in its oxidized form,and activation of cellular stress pathways and DNA damage,subsequently leading to apoptosis. Oxidative stress is believed to be the main mechanism through which this compounds targets cancer cells. OBT was well tolerated in mice,slowed tumor growth,and statistically prolonged survival in GBM tumor models. The ratio of median survival in U251 intracranial model in OBT vs control was 1.367 (95% confidence interval [CI] of ratio = 1.031 to 1.367,P = .008). Tumor growth inhibition was also observed in a mouse breast cancer model (average tumor volume per mouse,OBT vs control: 36.3 vs 200.4mm(3),difference = 164.1mm(3),95% CI =72.6 to 255.6mm(3),P = .005). CONCLUSIONS Given its properties and efficacy in cancer killing,our results suggest that OBT is a promising cancer therapeutic.
View Publication
Avraham HK et al. (JAN 2014)
British Journal of Pharmacology 171 2 468--479
The cannabinoid CB receptor agonist AM1241 enhances neurogenesis in GFAP/Gp120 transgenic mice displaying deficits in neurogenesis
BACKGROUND AND PURPOSE HIV-1 glycoprotein Gp120 induces apoptosis in rodent and human neurons in vitro and in vivo.HIV-1/Gp120 is involved in the pathogenesis of HIV-associated dementia (HAD) and inhibits proliferation of adult neural progenitor cells (NPCs) in glial fibrillary acidic protein (GFAP)/Gp120 transgenic (Tg) mice. As cannabinoids exert neuroprotective effects in several model systems,we examined the protective effects of the CB receptor agonist AM1241 on Gp120-mediated insults on neurogenesis. EXPERIMENTAL APPROACH We assessed the effects of AM1241 on survival and apoptosis in cultures of human and murine NPCs with immunohistochemical and TUNEL techniques. Neurogenesis in the hippocampus of GFAP/Gp120 transgenic mice in vivo was also assessed by immunohistochemistry. KEY RESULTS AM1241 inhibited in vitroGp120-mediated neurotoxicity and apoptosis of primary human and murine NPCs and increased their survival. AM1241 also promoted differentiation of NPCs to neuronal cells. While GFAP/Gp120 Tg mice exhibited impaired neurogenesis,as indicated by reduction in BrdU cells and doublecortin (DCX) cells,and a decrease in cells with proliferating cell nuclear antigen (PCNA),administration of AM1241 to GFAP/Gp120 Tg mice resulted in enhanced in vivo neurogenesis in the hippocampus as indicated by increase in neuroblasts,neuronal cells,BrdU cells and PCNA cells. Astrogliosis and gliogenesis were decreased in GFAP/Gp120 Tg mice treated with AM1241,compared with those treated with vehicle. CONCLUSIONS AND IMPLICATIONS The CB receptor agonist rescued impaired neurogenesis caused by HIV-1/Gp120 insult. Thus,CB receptor agonists may act as neuroprotective agents,restoring impaired neurogenesis in patients with HAD.
View Publication
Aumiller V et al. ( 2017)
Scientific reports 7 1 149
Comparative analysis of lysyl oxidase (like) family members in pulmonary fibrosis.
Extracellular matrix (ECM) composition and stiffness are major driving forces for the development and persistence of fibrotic diseases. Lysyl oxidase (LOX) and LOX-like (LOXL) proteins play crucial roles in ECM remodeling due to their collagen crosslinking and intracellular functions. Here,we systematically investigated LOX/L expression in primary fibroblasts and epithelial cells under fibrotic conditions,Bleomycin (BLM) induced lung fibrosis and in human IPF tissue. Basal expression of all LOX/L family members was detected in epithelial cells and at higher levels in fibroblasts. Various pro-fibrotic stimuli broadly induced LOX/L expression in fibroblasts,whereas specific induction of LOXL2 and partially LOX was observed in epithelial cells. Immunohistochemical analysis of lung tissue from 14 IPF patients and healthy donors revealed strong induction of LOX and LOXL2 in bronchial and alveolar epithelium as well as fibroblastic foci. Using siRNA experiments we observed that LOXL2 and LOXL3 were crucial for fibroblast-to-myofibroblast transition (FMT). As FMT could only be reconstituted with an enzymatically active LOXL2 variant,we conclude that LOXL2 enzymatic function is crucial for fibroblast transdifferentiation. In summary,our study provides a comprehensive analysis of the LOX/L family in fibrotic lung disease and indicates prominent roles for LOXL2/3 in fibroblast activation and LOX/LOXL2 in IPF.
View Publication
Aufderheide M and Emura M (JUL 2017)
Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie 69 6 393--401
Phenotypical changes in a differentiating immortalized bronchial epithelial cell line after exposure to mainstream cigarette smoke and e-cigarette vapor.
3D constructs composed of differentiated immortalized primary normal human bronchial epithelial (NHBE) cells (CL-1548) were repeatedly exposed at the air-liquid interface to non-lethal concentrations of mainstream cigarette smoke (4 cigarettes a day,5days/week,8 repetitions in total) and e-cigarette vapor (50 puffs a day,5 days/week,8 repetitions in total) to build up a permanent burden on the cells. Samples were taken after 4,6 and 8 times of repeated smoke exposure and the cultures were investigated using histopathological methods Compared to the clean air-exposed cultures (process control) and incubator control,the aerosol-exposed cultures showed a reduction of ciliated,mucus-producing and club cells. At the end of the exposure phase,we even found metaplastic areas positive for CK13 antibody in the cultures exposed to mainstream cigarette smoke and e-liquid vapor,commonly seen in squamous cells as a marker for non-cornified squamous epithelium. The control cultures (incubator cells) showed no comparable phenotypical changes. In conclusion,our in vitro model presents a valuable tool to study the induction of phenotypical changes after exposure to hazardous airborne material.
View Publication