Kallas A et al. (FEB 2014)
Stem Cells International 2014 298163
SOX2 is regulated differently from NANOG and OCT4 in human embryonic stem cells during early differentiation initiated with sodium butyrate
Transcription factors NANOG,OCT4,and SOX2 regulate self-renewal and pluripotency in human embryonic stem (hES) cells; however,their expression profiles during early differentiation of hES cells are unclear. In this study,we used multiparameter flow cytometric assay to detect all three transcription factors (NANOG,OCT4,and SOX2) simultaneously at single cell level and monitored the changes in their expression during early differentiation towards endodermal lineage (induced by sodium butyrate). We observed at least four distinct populations of hES cells,characterized by specific expression patterns of NANOG,OCT4,and SOX2 and differentiation markers. Our results show that a single cell can express both differentiation and pluripotency markers at the same time,indicating a gradual mode of developmental transition in these cells. Notably,distinct regulation of SOX2 during early differentiation events was detected,highlighting the potential importance of this transcription factor for self-renewal of hES cells during differentiation.
View Publication
文献
Legartová et al. (APR 2014)
Biochemistry and cell biology = Biochimie et biologie cellulaire 92 2 85--93
Cell differentiation along multiple pathways accompanied by changes in histone acetylation status.
Post-translational modification of histones is fundamental to the regulation of basic nuclear processes and subsequent cellular events,including differentiation. In this study,we analyzed acetylated forms of histones H2A,H2B,and H4 during induced differentiation in mouse (mESCs) and human (hESCs) embryonic stem cells and during induced enterocytic differentiation of colon cancer cells in vitro. Endoderm-like differentiation of mESCs induced by retinoic acid and enterocytic differentiation induced by histone deacetylase inhibitor sodium butyrate were accompanied by increased mono-,di-,and tri-acetylation of histone H2B and a pronounced increase in di- and tri-acetylation of histone H4. In enterocytes,mono-acetylation of histone H2A also increased and tetra-acetylation of histone H4 appeared only after induction of this differentiation pathway. During differentiation of hESCs,we observed increased mono-acetylation and decreased tri-acetylation of H2B. Mono-,di-,and tri-acetylation of H4 were reduced,manifested by a significant increase in nonacetylated H4 histones. Levels of acetylated histones increased during induced differentiation in mESCs and during histone deacetylase (HDAC) inhibitor-induced enterocytic differentiation,whereas differentiation of human ESCs was associated with reduced acetylation of histones H2B and H4.
View Publication
文献
Matsumoto T et al. (JAN 2014)
Biological & pharmaceutical bulletin 37 4 633--41
The GANT61, a GLI inhibitor, induces caspase-independent apoptosis of SK-N-LO cells.
GANT61 is a small-molecule inhibitor of glioma-associated oncogene 1 (GLI1)- and GLI2-mediated transcription at the nuclear level that exerts its effect by preventing DNA binding. It has been demonstrated to induce cell death against Ewing's sarcoma family tumor (ESFT) cell lines in a dose-dependent manner. The most sensitive cell line was SK-N-LO,which expresses the EWS-FLI1 fusion gene. SK-N-LO cells treated with GANT61 showed cellular and nuclear morphological changes,including cell shrinkage,chromatin condensation and nuclear fragmentation,in a concentration-dependent manner,as visualized by Hoechst 33342 staining. Furthermore,annexin V-propidium iodide (PI) double-staining revealed a significant increase in the number of late apoptotic cells. GANT61 induced a significant decrease in the proportion of cells in the S phase. Significant decrease of the protein levels of GLI2,survivin,cyclin A and claspin,and significant increase of p21 expression was also observed in the cells treated with GANT61. Moreover,poly (ADP-ribose) polymerase (PARP) cleavage was observed,but no cleavage of caspase-3 or -7,or any change in the expressions of Bcl-2 or p53 were observed. These findings suggest that GANT61 induces cell death of SK-N-LO cells in a caspase-independent manner,by inhibiting DNA replication in the S phase.
View Publication
文献
Chung S-KK et al. (JUL 2014)
Protein and Cell 5 7 544--551
Functional analysis of the acetylation of human p53 in DNA damage responses
As a critical tumor suppressor,p53 is inactivated in human cancer cells by somatic gene mutation or disruption of pathways required for its activation. Therefore,it is critical to elucidate the mechanism underlying p53 activation after genotoxic and cellular stresses. Accumulating evidence has indicated the importance of posttranslational modifications such as acetylation in regulating p53 stability and activity. However,the physiological roles of the eight identified acetylation events in regulating p53 responses remain to be fully understood. By employing homologous recombination,we introduced various combinations of missense mutations (lysine to arginine) into eight acetylation sites of the endogenous p53 gene in human embryonic stem cells (hESCs). By determining the p53 responses to DNA damage in the p53 knock-in mutant hESCs and their derivatives,we demonstrate physiological importance of the acetylation events within the core domain (K120 and K164) and at the C-terminus (K370/372/373/381/382/386) in regulating human p53 responses to DNA damage.
View Publication
文献
Wang X et al. (APR 2014)
PLoS ONE 9 4 e93575
Precise gene modification mediated by TALEN and single-stranded oligodeoxynucleotides in human cells.
The development of human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) facilitates in vitro studies of human disease mechanisms,speeds up the process of drug screening,and raises the feasibility of using cell replacement therapy in clinics. However,the study of genotype-phenotype relationships in ESCs or iPSCs is hampered by the low efficiency of site-specific gene editing. Transcription activator-like effector nucleases (TALENs) spurred interest due to the ease of assembly,high efficiency and faithful gene targeting. In this study,we optimized the TALEN design to maximize its genomic cutting efficiency. We showed that using optimized TALENs in conjunction with single-strand oligodeoxynucleotide (ssODN) allowed efficient gene editing in human cells. Gene mutations and gene deletions for up to 7.8 kb can be accomplished at high efficiencies. We established human tumor cell lines and H9 ESC lines with homozygous deletion of the microRNA-21 (miR-21) gene and miR-9-2 gene. These cell lines provide a robust platform to dissect the roles these genes play during cell differentiation and tumorigenesis. We also observed that the endogenous homologous chromosome can serve as a donor template for gene editing. Overall,our studies demonstrate the versatility of using ssODN and TALEN to establish genetically modified cells for research and therapeutic application.
View Publication
文献
Hendel A et al. (APR 2014)
Cell Reports 7 1 293--305
Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing
Targeted genome editing with engineered nucleases has transformed the ability to introduce precise sequence modifications at almost any site within the genome. A major obstacle to probing the efficiency and consequences of genome editing is that no existing method enables the frequency of different editing events to be simultaneously measured across a cell population at any endogenous genomic locus.We have developed a method for quantifying individual genome-editing outcomes at any site of interest with single-molecule real-time (SMRT) DNA sequencing. We show that this approach can be applied at various loci using multiple engineered nuclease platforms,including transcription-activator-like effector nucleases (TALENs),RNA-guided endonucleases (CRISPR/Cas9),and zinc finger nucleases (ZFNs),and in different cell lines to identify conditions and strategies in which the desired engineering outcome has occurred. This approach offers a technique for studying double-strand break repair,facilitates the evaluation of gene-editing technologies,and permits sensitive quantification of editing outcomes in almost every experimental system used. ?? 2014 The Authors.
View Publication
文献
Schmuck EG et al. (MAR 2014)
Cardiovascular engineering and technology 5 1 119--131
Cardiac fibroblast-derived 3D extracellular matrix seeded with mesenchymal stem cells as a novel device to transfer cells to the ischemic myocardium.
PURPOSE Demonstrate a novel manufacturing method to generate extracellular matrix scaffolds from cardiac fibroblasts (CF-ECM) as a therapeutic mesenchymal stem cell-transfer device. MATERIALS AND METHODS Rat CF were cultured at high-density (˜1.6×10(5)/cm(2)) for 10-14 days. Cell sheets were removed from the culture dish by incubation with EDTA and decellularized with water and peracetic acid. CF-ECM was characterized by mass spectrometry,immunofluorescence and scanning electron microscopy. CF-ECM seeded with human embryonic stem cell derived mesenchymal stromal cells (hEMSCs) were transferred into a mouse myocardial infarction model. 48 hours later,mouse hearts were excised and examined for CF-ECM scaffold retention and cell transfer. RESULTS CF-ECM scaffolds are composed of fibronectin (82%),collagens type I (13%),type III (3.4%),type V (0.2%),type II (0.1%) elastin (1.3%) and 18 non-structural bioactive molecules. Scaffolds remained intact on the mouse heart for 48 hours without the use of sutures or glue. Identified hEMSCs were distributed from the epicardium to the endocardium. CONCLUSIONS High density cardiac fibroblast culture can be used to generate CF-ECM scaffolds. CF-ECM scaffolds seeded with hEMSCs can be maintained on the heart without suture or glue. hEMSC are successfully delivered throughout the myocardium.
View Publication
文献
Sebaa M et al. (JAN 2015)
Journal of Biomedical Materials Research - Part A 103 1 25--37
The effects of poly(3,4-ethylenedioxythiophene) coating on magnesium degradation and cytocompatibility with human embryonic stem cells for potential neural applications
Magnesium (Mg) is a promising conductive metallic biomaterial due to its desirable mechanical properties for load bearing and biodegradability in human body. Controlling the rapid degradation of Mg in physiological environment continues to be the key challenge toward clinical translation. In this study,we investigated the effects of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) coating on the degradation behavior of Mg substrates and their cytocompatibility. Human embryonic stem cells (hESCs) were used as the in vitro model system to study cellular responses to Mg degradation because they are sensitive and can potentially differentiate into many cell types of interest (e.g.,neurons) for regenerative medicine. The PEDOT was deposited on Mg substrates using electrochemical deposition. The greater number of cyclic voltammetry (CV) cycles yielded thicker PEDOT coatings on Mg substrates. Specifically,the coatings produced by 2,5,and 10 CV cycles (denoted as 2×-PEDOT-Mg,5×-PEDOT-Mg,and 10×-PEDOT-Mg) had an average thickness of 31,63,and 78 µm,respectively. Compared with non-coated Mg samples,all PEDOT coated Mg samples showed slower degradation rates,as indicated by Tafel test results and Mg ion concentrations in the post-culture media. The 5×-PEDOT-Mg showed the best coating adhesion and slowest Mg degradation among the tested samples. Moreover,hESCs survived for the longest period when cultured with the 5×-PEDOT-Mg samples compared with the non-coated Mg and 2×-PEDOT-Mg. Overall,the results of this study showed promise in using PEDOT coating on biodegradable Mg-based implants for potential neural recording,stimulation and tissue engineering applications,thus encouraging further research.
View Publication
文献
Brzeszczynska J et al. (JUN 2014)
International journal of molecular medicine 33 6 1597--1606
Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells
It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular,the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory,the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel,provides a robust model of human development and in the future,may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally,we demonstrate that following continued cell culture,stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore,also offer an in vitro model of disease.
View Publication
文献
Cheung C et al. (APR 2014)
Nature protocols 9 4 929--38
Directed differentiation of embryonic origin-specific vascular smooth muscle subtypes from human pluripotent stem cells.
Vascular smooth muscle cells (SMCs) arise from diverse developmental origins. Regional distribution of vascular diseases may,in part,be attributed to this inherent heterogeneity in SMC lineage. Therefore,systems for generating human SMC subtypes of distinct embryonic origins would represent useful platforms for studying the influence of SMC lineage on the spatial specificity of vascular disease. Here we describe how human pluripotent stem cells can be differentiated into distinct populations of SMC subtypes under chemically defined conditions. The initial stage (days 0-5 or 0-7) begins with the induction of three intermediate lineages: neuroectoderm,lateral plate mesoderm and paraxial mesoderm. Subsequently,these precursor lineages are differentiated into contractile SMCs (days 5-19+). At key stages,the emergence of lineage-specific markers confirms recapitulation of embryonic developmental pathways and generation of functionally distinct SMC subtypes. The ability to derive an unlimited supply of human SMCs will accelerate applications in regenerative medicine and disease modeling.
View Publication
Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea.
The prevalence of hearing loss after damage to the mammalian cochlea has been thought to be due to a lack of spontaneous regeneration of hair cells,the primary receptor cells for sound. Here,we show that supporting cells,which surround hair cells in the normal cochlear epithelium,differentiate into new hair cells in the neonatal mouse following ototoxic damage. Using lineage tracing,we show that new hair cells,predominantly outer hair cells,arise from Lgr5-expressing inner pillar and third Deiters cells and that new hair cell generation is increased by pharmacological inhibition of Notch. These data suggest that the neonatal mammalian cochlea has some capacity for hair cell regeneration following damage alone and that Lgr5-positive cells act as hair cell progenitors in the cochlea.
View Publication
文献
Chen W-J et al. ( 2014)
Nature communications 5 3472
Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling.
Cancer stem cells (CSCs) are a promising target for treating cancer,yet how CSC plasticity is maintained in vivo is unclear and is difficult to study in vitro. Here we establish a sustainable primary culture of Oct3/4(+)/Nanog(+) lung CSCs fed with CD90(+) cancer-associated fibroblasts (CAFs) to further advance our knowledge of preserving stem cells in the tumour microenvironment. Using transcriptomics we identify the paracrine network by which CAFs enrich CSCs through de-differentiation and reacquisition of stem cell-like properties. Specifically,we find that IGF1R signalling activation in cancer cells in the presence of CAFs expressing IGF-II can induce Nanog expression and promote stemness. Moreover,this paracrine signalling predicts overall and relapse-free survival in stage I non-small cell lung cancer (NSCLC) patients. IGF-II/IGF1R signalling blockade inhibits Nanog expression and attenuates cancer stem cell features. Our data demonstrate that CAFs constitute a supporting niche for cancer stemness,and targeting this paracrine signalling may present a new therapeutic strategy for NSCLC.
View Publication