Barbaric I et al. (JUL 2014)
Stem Cell Reports 3 1 142--155
Time-lapse analysis of human embryonic stem cells reveals multiple bottlenecks restricting colony formation and their relief upon culture adaptation
Using time-lapse imaging,we have identified a series of bottlenecks that restrict growth of early-passage human embryonic stem cells (hESCs) and that are relieved by karyotypically abnormal variants that are selected by prolonged culture. Only a minority of karyotypically normal cells divided after plating,and these were mainly cells in the later stages of cell cycle at the time of plating. Furthermore,the daughter cells showed a continued pattern of cell death after division,so that few formed long-term proliferating colonies. These colony-forming cells showed distinct patterns of cell movement. Increasing cell density enhanced cell movement facilitating cell:cell contact,which resulted in increased proportion of dividing cells and improved survival postplating of normal hESCs. In contrast,most of the karyotypically abnormal cells reentered the cell cycle on plating and gave rise to healthy progeny,without the need for cell:cell contacts and independent of their motility patterns. ?? 2014 The Authors.
View Publication
Cytokine-regulated GADD45G induces differentiation and lineage selection in hematopoietic stem cells.
The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC) must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however,the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely,the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that,once GADD45G is expressed,the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here,we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.
View Publication
文献
Brafman DA ( 2015)
Methods in molecular biology (Clifton,N.J.) 1212 87--102
Generation, Expansion, and Differentiation of Human Pluripotent Stem Cell (hPSC) Derived Neural Progenitor Cells (NPCs).
Human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs),a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS),could provide an unlimited source of cells for neural-related cell-based therapies and disease modeling. However,the use of NPCs for the study and treatment of a variety of debilitating neurological diseases requires the development of scalable and reproducible protocols for their generation,expansion,characterization,and neuronal differentiation. Here,we describe a serum-free method for the stepwise generation of NPCs from hPSCs through the sequential formation of embryoid bodies (EBs) and neuro-epithelial-like rosettes. NPCs isolated from neural rosette cultures can be homogenously expanded while maintaining high expression of pan-neural markers such as SOX1,SOX2,and Nestin. Finally,this protocol allows for the robust differentiation of NPCs into microtubule-associated protein 2 (MAP2) and β-Tubulin-III (β3T) positive neurons.
View Publication
文献
Chen D et al. (MAY 2014)
Genes & Cancer 5 5-6 212--25
Increased expression of Id1 and Id3 promotes tumorigenicity by enhancing angiogenesis and suppressing apoptosis in small cell lung cancer.
Constant deregulation of Id1 and Id3 has been implicated in a wide range of carcinomas. However,underlying molecular evidence for the joint role of Id1 and Id3 in the tumorigenicity of small cell lung cancer (SCLC) is sparse. Investigating the biological significance of elevated expression in SCLC cells,we found that Id1 and Id3 co-suppression resulted in significant reduction of proliferation rate,invasiveness and anchorage-independent growth. Suppressing both Id1 and Id3 expression also greatly reduced the average size of tumors produced by transfectant cells when inoculated subcutaneously into nude mice. Further investigation revealed that suppressed expression of Id1 and Id3 was accompanied by decreased angiogenesis and increased apoptosis. Therefore,the SCLC tumorigenicity suppression effect of double knockdown of Id1 and Id3 may be regulated through pathways of apoptosis and angiogenesis.
View Publication
文献
Iovino S et al. (DEC 2014)
Diabetes 63 12 4130--4142
Genetic insulin resistance is a potent regulator of gene expression and proliferation in human iPS cells
Insulin resistance is central to diabetes and metabolic syndrome. To define the consequences of genetic insulin resistance distinct from those secondary to cellular differentiation or in vivo regulation,we generated induced pluripotent stem cells (iPSCs) from individuals with insulin receptor mutations and age-appropriate control subjects and studied insulin signaling and gene expression compared with the fibroblasts from which they were derived. iPSCs from patients with genetic insulin resistance exhibited altered insulin signaling,paralleling that seen in the original fibroblasts. Insulin-stimulated expression of immediate early genes and proliferation were also potently reduced in insulin resistant iPSCs. Global gene expression analysis revealed marked differences in both insulin-resistant iPSCs and corresponding fibroblasts compared with control iPSCs and fibroblasts. Patterns of gene expression in patients with genetic insulin resistance were particularly distinct in the two cell types,indicating dependence on not only receptor activity but also the cellular context of the mutant insulin receptor. Thus,iPSCs provide a novel approach to define effects of genetically determined insulin resistance. This study demonstrates that effects of insulin resistance on gene expression are modified by cellular context and differentiation state. Moreover,altered insulin receptor signaling and insulin resistance can modify proliferation and function of pluripotent stem cell populations.
View Publication
文献
Graham B et al. (JUL 2014)
International Journal of Environmental Research and Public Health 11 7 7524--7536
Enhancement of arsenic trioxide-mediated changes in human induced pluripotent stem cells (IPS)
Induced pluripotent stem cells (IPS) are an artificially derived type of pluripotent stem cell,showing many of the same characteristics as natural pluripotent stem cells. IPS are a hopeful therapeutic model; however there is a critical need to determine their response to environmental toxins. Effects of arsenic on cells have been studied extensively; however,its effect on IPS is yet to be elucidated. Arsenic trioxide (ATO) has been shown to inhibit cell proliferation,induce apoptosis and genotoxicity in many cells. Based on ATOs action in other cells,we hypothesize that it will induce alterations in morphology,inhibit cell viability and induce a genotoxic effect on IPS. Cells were treated for 24 hours with ATO (0-9 µg/mL). Cell morphology,viability and DNA damage were documented. Results indicated sufficient changes in morphology of cell colonies mainly in cell ability to maintain grouping and ability to remain adherent. Cell viability decreased in a dose dependent manner. There were significant increases in tail length and moment as well as destruction of intact DNA as concentration increased. Exposure to ATO resulted in a reproducible dose dependent sequence of events marked by changes in morphology,decrease of cell viability,and induction of genotoxicity in IPS.
View Publication
文献
Liu Y et al. (JUL 2014)
PLoS ONE 9 7 e100885
Modulating notochordal differentiation of human induced pluripotent stem cells using natural nucleus pulposus tissue matrix
Human induced pluripotent stem cells (hiPSCs) can differentiate into notochordal cell (NC)-like cells when cultured in the presence of natural porcine nucleus pulposus (NP) tissue matrix. The method promises massive production of high-quality,functional cells to treat degenerative intervertebral discs (IVDs). Based on our previous work,we further examined the effect of cell-NP matrix contact and culture medium on the differentiation,and further assessed the functional differentiation ability of the generated NC-like. The study showed that direct contact between hiPSCs and NP matrix can promote the differentiation yield,whilst both the contact and non-contact cultures can generate functional NC-like cells. The generated NC-like cells are highly homogenous regarding the expression of notochordal marker genes. A culture medium containing a cocktail of growth factors (FGF,EGF,VEGF and IGF-1) also supported the notochordal differentiation in the presence of NP matrix. The NC-like cells showed excellent functional differentiation ability to generate NP-like tissue which was rich in aggrecan and collagen type II; and particularly,the proteoglycan to collagen content ratio was as high as 12.5-17.5 which represents a phenotype close to NP rather than hyaline cartilage. Collectively,the present study confirmed the effectiveness and flexibility of using natural NP tissue matrix to direct notochordal differentiation of hiPSCs,and the potential of using the generated NC-like cells for treating IVD degeneration.
View Publication
文献
Maranville JC et al. (NOV 2014)
Journal of Crohn's & colitis 8 11 1539--47
In vitro sensitivity assays and clinical response to glucocorticoids in patients with inflammatory bowel disease.
BACKGROUND Glucocorticoids (GCs) are steroid hormones used to induce remission in moderate-to-severe inflammatory bowel disease (IBD). A substantial fraction of patients do not respond to GC treatment and require alternate therapies or surgery. At present,non-response can only be assessed empirically by observing continued disease activity. METHODS To identify potential biomarkers of GC response,we retrospectively identified and recruited 18 GC-responsive and 18 GC-nonresponsive IBD patients. This sample included 14 patients with ulcerative colitis (UC) and 22 patients with Crohn's disease (CD),all previously treated with steroids. In peripheral blood mononuclear cells from each patient,we performed in vitro assays to measure GC inhibition of three different immune stimulants (phytohemagglutinin [PHA],α-CD3/α-CD28,and lipopolysaccharide [LPS]). RESULTS In both diseases,we found that inhibition of PHA-mediated T cell proliferation was significantly associated with clinical GC response (P=0.04). Inhibition of proliferation due to direct T cell receptor stimulation using α-CD3/α-CD28 was also significantly associated with clinical GC response in UC patients (P=0.009),but not in CD patients (P=0.78). Interestingly,inhibition of LPS-mediated cytokine secretion showed the strongest association with clinical GC response across both diseases (P=0.005). CONCLUSIONS We show that inhibition of LPS stimulation is more strongly associated with clinical GC response in IBD patients than inhibition of PHA and α-CD3/α-CD28-mediated proliferation. These results support an important role of bacterial recognition and innate immunity in the etiology of IBD. This assay could be a powerful predictor of clinical response to GCs.
View Publication
文献
Kim G-H et al. ( 2014)
Angewandte Chemie (International ed. in English) 53 35 9271--9274
Imidazole-based small molecules that promote neurogenesis in pluripotent cells.
Reported herein are two imidazole-based small molecules,termed neurodazine (Nz) and neurodazole (Nzl),which induce neuronal differentiation of pluripotent P19 cells. Their ability to induce neurogenesis of P19 cells is comparable to that of retinoic acid. However,Nz and Nzl were found to be more selective neurogenesis inducers than retinoic acid owing to their unique ability to suppress astrocyte differentiation of P19 cells. Our results also show that Nz and Nzl promote production of physiologically active neurons because P19-cell-derived neurons induced by these substances have functional glutamate responsiveness. The present study suggests that Nz and Nzl could serve as important chemical tools to induce formation of specific populations of neuronal cell types from pluripotent cells.
View Publication
文献
Ting S et al. (SEP 2014)
Stem Cell Research 13 2 202--213
An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures
The development of novel platforms for large scale production of human embryonic stem cells (hESC) derived cardiomyocytes (CM) becomes more crucial as the demand for CMs in preclinical trials,high throughput cardio toxicity assays and future regenerative therapeutics rises. To this end,we have designed a microcarrier (MC) suspension agitated platform that integrates pluripotent hESC expansion followed by CM differentiation in a continuous,homogenous process.Hydrodynamic shear stresses applied during the hESC expansion and CM differentiation steps drastically reduced the capability of the cells to differentiate into CMs. Applying vigorous stirring during pluripotent hESC expansion on Cytodex 1 MC in spinner cultures resulted in low CM yields in the following differentiation step (cardiac troponin-T (cTnT): 22.83. ??. 2.56%; myosin heavy chain (MHC): 19.30. ??. 5.31%). Whereas the lower shear experienced in side to side rocker (wave type) platform resulted in higher CM yields (cTNT: 47.50. ??. 7.35%; MHC: 42.85. ??. 2.64%). The efficiency of CM differentiation is also affected by the hydrodynamic shear stress applied during the first 3. days of the differentiation stage. Even low shear applied continuously by side to side rocker agitation resulted in very low CM differentiation efficiency (cTnT. textless. 5%; MHC. textless. 2%). Simply by applying intermittent agitation during these 3. days followed by continuous agitation for the subsequent 9. days,CM differentiation efficiency can be substantially increased (cTNT: 65.73. ??. 10.73%; MHC: 59.73. ??. 9.17%). These yields are 38.3% and 39.3% higher (for cTnT and MHC respectively) than static culture control.During the hESC expansion phase,cells grew on continuously agitated rocker platform as pluripotent cell/MC aggregates (166??88??105??m2) achieving a cell concentration of 3.74??0.55??106cells/mL (18.89??2.82 fold expansion) in 7days. These aggregates were further differentiated into CMs using a WNT modulation differentiation protocol for the subsequent 12days on a rocking platform with an intermittent agitation regime during the first 3days. Collectively,the integrated MC rocker platform produced 190.5??58.8??106 CMs per run (31.75??9.74 CM/hESC seeded). The robustness of the system was demonstrated by using 2 cells lines,hESC (HES-3) and human induced pluripotent stem cell (hiPSC) IMR-90. The CM/MC aggregates formed extensive sarcomeres that exhibited cross-striations confirming cardiac ontogeny. Functionality of the CMs was demonstrated by monitoring the effect of inotropic drug,Isoproterenol on beating frequency.In conclusion,we have developed a simple robust and scalable platform that integrates both hESC expansion and CM differentiation in one unit process which is capable of meeting the need for large amounts of CMs. ?? 2014.
View Publication
文献
Wang Y et al. ( 2014)
Nature Communications 5 4432
An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling
The mammalian immune system constitutively senses vast quantities of commensal bacteria and their products through pattern recognition receptors,yet excessive immune reactivity is prevented under homeostasis. The intestinal microbiome can influence host susceptibility to extra-intestinal autoimmune disorders. Here we report that polysaccharide A (PSA),a symbiosis factor for the human intestinal commensal Bacteroides fragilis,protects against central nervous system demyelination and inflammation during experimental autoimmune encephalomyelitis (EAE),an animal model for multiple sclerosis,through Toll-like receptor 2 (TLR2). TLR2 mediates tissue-specific expansion of a critical regulatory CD39(+) CD4 T-cell subset by PSA. Ablation of CD39 signalling abrogates PSA control of EAE manifestations and inflammatory cytokine responses. Further,CD39 confers immune-regulatory phenotypes to total CD4 T cells and Foxp3(+) CD4 Tregs. Importantly,CD39-deficient CD4 T cells show an enhanced capability to drive EAE progression. Our results demonstrate the therapeutic potential and underlying mechanism by which an intestinal symbiont product modulates CNS-targeted demyelination.
View Publication
文献
Bi P et al. (AUG 2014)
Nature medicine 20 8 911--8
Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity.
Beige adipocytes in white adipose tissue (WAT) are similar to classical brown adipocytes in that they can burn lipids to produce heat. Thus,an increase in beige adipocyte content in WAT browning would raise energy expenditure and reduce adiposity. Here we report that adipose-specific inactivation of Notch1 or its signaling mediator Rbpj in mice results in browning of WAT and elevated expression of uncoupling protein 1 (Ucp1),a key regulator of thermogenesis. Consequently,as compared to wild-type mice,Notch mutants exhibit elevated energy expenditure,better glucose tolerance and improved insulin sensitivity and are more resistant to high fat diet-induced obesity. By contrast,adipose-specific activation of Notch1 leads to the opposite phenotypes. At the molecular level,constitutive activation of Notch signaling inhibits,whereas Notch inhibition induces,Ppargc1a and Prdm16 transcription in white adipocytes. Notably,pharmacological inhibition of Notch signaling in obese mice ameliorates obesity,reduces blood glucose and increases Ucp1 expression in white fat. Therefore,Notch signaling may be therapeutically targeted to treat obesity and type 2 diabetes.
View Publication