P. Petrov et al. (mar 2019)
Scientific reports 9 1 4155
Computational analysis of the evolutionarily conserved Missing In Metastasis/Metastasis Suppressor 1 gene predicts novel interactions, regulatory regions and transcriptional control.
Missing in Metastasis (MIM),or Metastasis Suppressor 1 (MTSS1),is a highly conserved protein,which links the plasma membrane to the actin cytoskeleton. MIM has been implicated in various cancers,however,its modes of action remain largely enigmatic. Here,we performed an extensive in silico characterisation of MIM to gain better understanding of its function. We detected previously unappreciated functional motifs including adaptor protein (AP) complex interaction site and a C-helix,pointing to a role in endocytosis and regulation of actin dynamics,respectively. We also identified new functional regions,characterised with phosphorylation sites or distinct hydrophilic properties. Strong negative selection during evolution,yielding high conservation of MIM,has been combined with positive selection at key sites. Interestingly,our analysis of intra-molecular co-evolution revealed potential regulatory hotspots that coincided with reduced potentially pathogenic polymorphisms. We explored databases for the mutations and expression levels of MIM in cancer. Experimentally,we focused on chronic lymphocytic leukaemia (CLL),where MIM showed high overall expression,however,downregulation on poor prognosis samples. Finally,we propose strong conservation of MTSS1 also on the transcriptional level and predict novel transcriptional regulators. Our data highlight important targets for future studies on the role of MIM in different tissues and cancers.
View Publication
M. A. Peplowski et al. (oct 2018)
Journal of molecular medicine (Berlin,Germany) 96 10 1081--1093
Interferon gamma decreases intestinal epithelial aquaporin 3 expression through downregulation of constitutive transcription.
Aquaporin (AQP) 3 expression is altered in inflammatory bowel diseases,although the exact mechanisms regulating AQP abundance are unclear. Although interferon gamma (IFNgamma) is centrally involved in intestinal inflammation,the effect of this cytokine on AQP3 expression remains unknown. HT-29 human colonic epithelial cells were treated with IFNgamma to assess AQP3 mRNA expression by real-time RT-PCR and functional protein expression through the uptake of radiolabelled glycerol. Transient knockdown of signal transducer and activator of transcription 1 (STAT1),STAT3,Sp1,and Sp3 were performed to determine the involvement of these transcription factors in the IFNgamma-induced signalling cascade. AQP3 promoter regions involved in the response to IFNgamma were assessed using a luciferase reporter system. Likewise,enteroids derived from human colonic biopsies were also treated with IFNgamma to assess for changes in AQP3 mRNA expression. IFNgamma decreased AQP3 mRNA expression in HT-29 cells in a time- and concentration-dependent manner and reduced functional AQP3 protein expression (decreased 3H-labelled glycerol uptake). IFNgamma also reduced AQP3 expression in enteroids derived from human colonic biopsies. Knockdown of STAT1 partially prevented the IFNgamma-induced downregulation of AQP3 expression,whereas STAT3 and Sp3 knockdowns resulted in increased baseline expression of AQP3 but did not alter IFNgamma-induced downregulation. Constitutive transcription of AQP3 is downregulated by IFNgamma as demonstrated using the luciferase reporter system,with Sp3 bound to the AQP3 promoter as shown by chromatin immunoprecipitation. AQP3 constitutive transcription in intestinal epithelial cells is downregulated by IFNgamma. This response requires STAT1 that is postulated to drive the downregulation of AQP3 expression through increased acetylation or decreased deacetylation the AQP3 promoter,ultimately resulting in decreased constitutive transcription of AQP3. KEY MESSAGES • IFNgamma suppresses the expression of AQP3 in intestinal epithelial cells. • Proximal AQP3 promoter elements are sufficient to drive constitutive expression and mediate the IFNgamma-induced downregulation of AQP3 mRNA expression. • IFNgamma-induced suppression of AQP3 is dependent upon STAT1 expression,but not STAT3,Sp1,or Sp3.
View Publication
M. Pavel-Dinu et al. ( 2019)
Nature communications 10 1 1634
Gene correction for SCID-X1 in long-term hematopoietic stem cells.
Gene correction in human long-term hematopoietic stem cells (LT-HSCs) could be an effective therapy for monogenic diseases of the blood and immune system. Here we describe an approach for X-linked sSevere cCombined iImmunodeficiency (SCID-X1) using targeted integration of a cDNA into the endogenous start codon to functionally correct disease-causing mutations throughout the gene. Using a CRISPR-Cas9/AAV6 based strategy,we achieve up to 20{\%} targeted integration frequencies in LT-HSCs. As measures of the lack of toxicity we observe no evidence of abnormal hematopoiesis following transplantation and no evidence of off-target mutations using a high-fidelity Cas9 as a ribonucleoprotein complex. We achieve high levels of targeting frequencies (median 45{\%}) in CD34+ HSPCs from six SCID-X1 patients and demonstrate rescue of lymphopoietic defect in a patient derived HSPC population in vitro and in vivo. In sum,our study provides specificity,toxicity and efficacy data supportive of clinical development of genome editing to treat SCID-Xl.
View Publication
S. H. Park et al. (may 2019)
Nucleic acids research
Highly efficient editing of the beta-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease.
Sickle cell disease (SCD) is a monogenic disorder that affects millions worldwide. Allogeneic hematopoietic stem cell transplantation is the only available cure. Here,we demonstrate the use of CRISPR/Cas9 and a short single-stranded oligonucleotide template to correct the sickle mutation in the beta-globin gene in hematopoietic stem and progenitor cells (HSPCs) from peripheral blood or bone marrow of patients with SCD,with 24.5 ± 7.6{\%} efficiency without selection. Erythrocytes derived from gene-edited cells showed a marked reduction of sickle cells,with the level of normal hemoglobin (HbA) increased to 25.3 ± 13.9{\%}. Gene-corrected SCD HSPCs retained the ability to engraft when transplanted into non-obese diabetic (NOD)-SCID-gamma (NSG) mice with detectable levels of gene correction 16-19 weeks post-transplantation. We show that,by using a high-fidelity SpyCas9 that maintained the same level of on-target gene modification,the off-target effects including chromosomal rearrangements were significantly reduced. Taken together,our results demonstrate efficient gene correction of the sickle mutation in both peripheral blood and bone marrow-derived SCD HSPCs,a significant reduction in sickling of red blood cells,engraftment of gene-edited SCD HSPCs in vivo and the importance of reducing off-target effects; all are essential for moving genome editing based SCD treatment into clinical practice.
View Publication
D. Park et al. (may 2019)
Scientific reports 9 1 7094
Differences in the molecular signatures of mucosal-associated invariant T cells and conventional T cells.
Mucosal-associated invariant T (MAIT) cells exhibit different characteristics from those of TCRalpha7.2- conventional T cells. They play important roles in various inflammatory diseases,including rheumatoid arthritis and inflammatory bowel disease. MAIT cells express a single T cell receptor alpha chain,TCRalpha7.2 segment associated with Jalpha33 and CDR3 with fixed length,which recognizes bacteria-derived vitamin B metabolites. However,the characteristics of MAIT cells and TCRalpha7.2+ CD161- T cells have never been compared. Here,we performed RNA sequencing to compare the properties of MAIT cells,TCRalpha7.2- conventional T cells and TCRalpha7.2+ CD161- T cells. Genome-wide transcriptomes of MAIT cells,TCRalpha7.2- conventional T cells,and TCRalpha7.2+ CD161- T cells were compared and analyzed using causal network analysis. This is the first report comparing the transcriptomes of MAIT cells,TCRalpha7.2- conventional T cells and TCRalpha7.2+ CD161- T cells. We also identified the predominant signaling pathways of MAIT cells,which differed from those of TCRalpha7.2- conventional T cells and TCRalpha7.2+ CD161- T cells,through a gene set enrichment test and upstream regulator analysis and identified the genes responsible for the characteristic MAIT cell phenotypes. Our study advances the complete understanding of MAIT biology.
View Publication
J. Paris et al. (jul 2019)
Cell stem cell 25 1 137--148.e6
Targeting the RNA m6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia.
Acute myeloid leukemia (AML) is an aggressive clonal disorder of hematopoietic stem cells (HSCs) and primitive progenitors that blocks their myeloid differentiation,generating self-renewing leukemic stem cells (LSCs). Here,we show that the mRNA m6A reader YTHDF2 is overexpressed in a broad spectrum of human AML and is required for disease initiation as well as propagation in mouse and human AML. YTHDF2 decreases the half-life of diverse m6A transcripts that contribute to the overall integrity of LSC function,including the tumor necrosis factor receptor Tnfrsf2,whose upregulation in Ythdf2-deficient LSCs primes cells for apoptosis. Intriguingly,YTHDF2 is not essential for normal HSC function,with YTHDF2 deficiency actually enhancing HSC activity. Thus,we identify YTHDF2 as a unique therapeutic target whose inhibition selectively targets LSCs while promoting HSC expansion.
View Publication
C. G. Palii et al. (may 2019)
Cell stem cell 24 5 812--820.e5
Single-Cell Proteomics Reveal that Quantitative Changes in Co-expressed Lineage-Specific Transcription Factors Determine Cell Fate.
Hematopoiesis provides an accessible system for studying the principles underlying cell-fate decisions in stem cells. Proposed models of hematopoiesis suggest that quantitative changes in lineage-specific transcription factors (LS-TFs) underlie cell-fate decisions. However,evidence for such models is lacking as TF levels are typically measured via RNA expression rather than by analyzing temporal changes in protein abundance. Here,we used single-cell mass cytometry and absolute quantification by mass spectrometry to capture the temporal dynamics of TF protein expression in individual cells during human erythropoiesis. We found that LS-TFs from alternate lineages are co-expressed,as proteins,in individual early progenitor cells and quantitative changes of LS-TFs occur gradually rather than abruptly to direct cell-fate decisions. Importantly,upregulation of a megakaryocytic TF in early progenitors is sufficient to deviate cells from an erythroid to a megakaryocyte trajectory,showing that quantitative changes in protein abundance of LS-TFs in progenitors can determine alternate cell fates.
View Publication
N. Paiboon et al. ( 2019)
Stem cells international 2019 9748795
Gestational Tissue-Derived Human Mesenchymal Stem Cells Use Distinct Combinations of Bioactive Molecules to Suppress the Proliferation of Human Hepatoblastoma and Colorectal Cancer Cells.
Background Cancer has been considered a serious global health problem and a leading cause of morbidity and mortality worldwide. Despite recent advances in cancer therapy,treatments of advance stage cancers are mostly ineffective resulting in poor survival of patients. Recent evidences suggest that multipotent human mesenchymal stem cells (hMSCs) play important roles in growth and metastasis of several cancers by enhancing their engraftment and inducing tumor neovascularization. However,the effect of hMSCs on cancer cells is still controversial because there are also evidences demonstrating that hMSCs inhibited growth and metastasis of some cancers. Methods In this study,we investigated the effects of bioactive molecules released from bone marrow and gestational tissue-derived hMSCs on the proliferation of various human cancer cells,including C3A,HT29,A549,Saos-2,and U251. We also characterized the hMSC-derived factors that inhibit cancer cell proliferation by protein fractionation and mass spectrometry analysis. Results We herein make a direct comparison and show that the effects of hMSCs on cancer cell proliferation and migration depend on both hMSC sources and cancer cell types and cancer-derived bioactive molecules did not affect the cancer suppressive capacity of hMSCs. Moreover,hMSCs use distinct combination of bioactive molecules to suppress the proliferation of human hepatoblastoma and colorectal cancer cells. Using protein fractionation and mass spectrometry analysis,we have identified several novel hMSC-derived factors that might be able to suppress cancer cell proliferation. Conclusion We believe that the procedure developed in this study could be used to discover other therapeutically useful molecules released by various hMSC sources for a future in vivo study.
View Publication
C. Onyilagha et al. (jun 2019)
Journal of immunology (Baltimore,Md. : 1950)
NK Cells Are Critical for Optimal Immunity to Experimental Trypanosoma congolense Infection.
NK cells are key innate immune cells that play critical roles in host defense. Although NK cells have been shown to regulate immunity to some infectious diseases,their role in immunity to Trypanosoma congolense has not been investigated. NK cells are vital sources of IFN-gamma and TNF-alpha; two key cytokines that are known to play important roles in resistance to African trypanosomes. In this article,we show that infection with T. congolense leads to increased levels of activated and functional NK cells in multiple tissue compartments. Systemic depletion of NK cells with anti-NK1.1 mAb led to increased parasitemia,which was accompanied by significant reduction in IFN-gamma production by immune cells in the spleens and liver of infected mice. Strikingly,infected NFIL3-/- mice (which genetically lack NK cell development and function) on the normally resistant background were highly susceptible to T. congolense infection. These mice developed fulminating and uncontrolled parasitemia and died significantly earlier (13 ± 1 d) than their wild-type control mice (106 ± 26 d). The enhanced susceptibility of NFIL3-/- mice to infection was accompanied by significantly impaired cytokine (IFN-gamma and TNF-alpha) response by CD3+ T cells in the spleens and liver. Adoptive transfer of NK cells into NFIL3-/- mice before infection rescued them from acute death in a perforin-dependent manner. Collectively,these studies show that NK cells are critical for optimal resistance to T. congolense,and its deficiency leads to enhanced susceptibility in infected mice.
View Publication
O. M. Omar et al. (nov 2018)
Molecular carcinogenesis 57 11 1577--1587
TFF1 antagonizes TIMP-1 mediated proliferative functions in gastric cancer.
Tissue inhibitor matrix metalloproteinase-1 (TIMP1) is one of four identified members of the TIMP family. We evaluated the role of TIMP1 in gastric cancer using human and mouse tissues along with gastric organoids and in vitro cell models. Using quantitative real-time RT-PCR,we detected significant overexpression of TIMP1 in the human gastric cancer samples,as compared to normal stomach samples (P {\textless} 0.01). We also detected overexpression of Timp1 in neoplastic gastric lesions of the Tff1-knockout (KO) mice,as compared to normal stomach tissues. Reconstitution of TFF1 in human gastric cancer cell lines led to a significant decrease in the mRNA expression level of TIMP1 (P {\textless} 0.05). In vitro analysis demonstrated that TIMP1 mRNA expression is induced by TNF-alpha and activation of NF-kappaB whereas inhibition of NF-kappaB using BAY11-7082 led to inhibition of NF-kappaB and downregulation of TIMP1. Western blot analysis confirmed the decrease in TIMP1 protein level following reconstitution of TFF1. By using immunofluorescence,we showed nuclear localization of NF-kappaB and expression of TIMP1 in gastric organoids established from the Tff1-KO stomach where reconstitution of Tff1 using recombinant protein led to a notable reduction in the expression of both NF-kappaB and TIMP1. Using EDU assay,as a measure of proliferating cells,we found that TIMP1 promotes cellular proliferation whereas TFF1 reconstitution leads to a significant decrease in cellular proliferation (P {\textless} 0.05). In summary,our findings demonstrate overexpression of TIMP1 in mouse and human gastric cancers through NF-kB-dependent mechanism. We also show that TFF1 suppresses NF-kappaB and inhibits TIMP1-mediated proliferative potential in gastric cancer.
View Publication
J. E. Oh et al. (jul 2019)
Nature 571 7763 122--126
Migrant memory B cells secrete luminal antibody in the vagina.
Antibodies secreted into mucosal barriers serve to protect the host from a variety of pathogens,and are the basis for successful vaccines1. In type I mucosa (such as the intestinal tract),dimeric IgA secreted by local plasma cells is transported through polymeric immunoglobulin receptors2 and mediates robust protection against viruses3,4. However,owing to the paucity of polymeric immunoglobulin receptors and plasma cells,how and whether antibodies are delivered to the type II mucosa represented by the lumen of the lower female reproductive tract remains unclear. Here,using genital herpes infection in mice,we show that primary infection does not establish plasma cells in the lamina propria of the female reproductive tract. Instead,upon secondary challenge with herpes simplex virus 2,circulating memory B cells that enter the female reproductive tract serve as the source of rapid and robust antibody secretion into the lumen of this tract. CD4 tissue-resident memory T cells secrete interferon-gamma,which induces expression of chemokines,including CXCL9 and CXCL10. Circulating memory B cells are recruited to the vaginal mucosa in a CXCR3-dependent manner,and secrete virus-specific IgG2b,IgG2c and IgA into the lumen. These results reveal that circulating memory B cells act as a rapidly inducible source of mucosal antibodies in the female reproductive tract.
View Publication
Y. Ode et al. (apr 2019)
Scientific reports 9 1 6252
Cold-inducible RNA-binding Protein Induces Neutrophil Extracellular Traps in the Lungs during Sepsis.
Extracellular cold-inducible RNA-binding protein (CIRP) exaggerates inflammation and tissue injury in sepsis. Neutrophil extracellular traps (NETs) are released by activated neutrophils during sepsis. NETs contribute to pathogen clearance,but excessive NET formation (NETosis) causes inflammation and tissue damage. Peptidylarginine deiminase 4 (PAD4) is associated with NETosis by increasing histone citrullination and chromatin decondensation. We hypothesized that CIRP induces NETosis in the lungs during sepsis via upregulating PAD4 expression. Sepsis was induced in C57BL/6 wild-type (WT) and CIRP-/- mice by cecal ligation and puncture (CLP). After 20 h of CLP induction,NETs in the lungs of WT and CIRP-/- mice were quantified by flow cytometry by staining the single cell suspensions with MPO and CitH3 Abs. PAD4 expression in the lungs of WT and CIRP-/- mice after sepsis was assessed by Western blotting. In vitro effects of recombinant mouse (rm) CIRP for NETosis and PAD4 expression in the bone marrow-derived neutrophils (BMDN) were assessed by flow cytometry and Western blotting,respectively. After 20 h of CLP,NETosis in the lungs was significantly decreased in CIRP-/- mice compared to WT mice,which also correlated with the decreased PAD4 expression. Intratracheal administration of rmCIRP into WT mice significantly increased NETosis and PAD4 expression in the lungs compared to vehicle-injected mice. In vitro culture of BMDN with rmCIRP significantly increased NETosis and PAD4 expression compared to PBS-treated control. Fluorescence microscopy revealed typical web-like structures consistent with NETs in rmCIRP-treated BMDN. Thus,CIRP serves as a novel inducer of NETosis via PAD4 during sepsis.
View Publication