Gleeson LE et al. (MAR 2016)
Journal of Immunology 196 6 2444--9
Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication.
Recent advances in immunometabolism link metabolic changes in stimulated macrophages to production of IL-1β,a crucial cytokine in the innate immune response to Mycobacterium tuberculosis. To investigate this pathway in the host response to M. tuberculosis,we performed metabolic and functional studies on human alveolar macrophages,human monocyte-derived macrophages,and murine bone marrow-derived macrophages following infection with the bacillus in vitro. M. tuberculosis infection induced a shift from oxidative phosphorylation to aerobic glycolysis in macrophages. Inhibition of this shift resulted in decreased levels of proinflammatory IL-1β and decreased transcription of PTGS2,increased levels of anti-inflammatory IL-10,and increased intracellular bacillary survival. Blockade or absence of IL-1R negated the impact of aerobic glycolysis on intracellular bacillary survival,demonstrating that infection-induced glycolysis limits M. tuberculosis survival in macrophages through induction of IL-1β. Drugs that manipulate host metabolism may be exploited as adjuvants for future therapeutic and vaccination strategies.
View Publication
文献
Deets KA et al. (MAR 2016)
Journal of Immunology 196 6 2450--5
Cutting Edge: Enhanced Clonal Burst Size Corrects an Otherwise Defective Memory Response by CD8+ Recent Thymic Emigrants.
The youngest peripheral T cells (recent thymic emigrants [RTEs]) are functionally distinct from naive T cells that have completed postthymic maturation. We assessed the RTE memory response and found that RTEs produced less granzyme B than their mature counterparts during infection but proliferated more and,therefore,generated equivalent target killing in vivo. Postinfection,RTE numbers contracted less dramatically than those of mature T cells,but RTEs were delayed in their transition to central memory,displaying impaired expression of CD62L,IL-2,Eomesodermin,and CXCR4,which resulted in impaired bone marrow localization. RTE-derived and mature memory cells expanded equivalently during rechallenge,indicating that the robust proliferative capacity of RTEs was maintained independently of central memory phenotype. Thus,the diminished effector function and delayed central memory differentiation of RTE-derived memory cells are counterbalanced by their increased proliferative capacity,driving the efficacy of the RTE response to that of mature T cells.
View Publication
文献
Saï et al. (FEB 2016)
PLoS pathogens 12 2 e1005407
HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.
Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover,Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands,such as HIV and CpG respectively,turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions,and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection,but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here,we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α,TNF-α,IFN-γ and IL-12,and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations,the addition of NK cells did not promote the release of these mediators,suggesting that once efficiently triggered by the virus,pDCs could not integrate new activating signals delivered by NK cells. However,high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly,we identified the alarmin HMGB1,released at pDC-NK cell synapse,as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover,HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1,HMGB1-specific antibodies,sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether,these findings identify HMGB1 as a trigger for IFN-α-mediated TRAIL expression at the surface of pDCs and NK cells,and they suggest a novel mechanism of innate control of HIV-1 infection.
View Publication
文献
Krummey SM et al. (MAR 2016)
Journal of Immunology 196 6 2838--46
Low-Affinity Memory CD8+ T Cells Mediate Robust Heterologous Immunity.
Heterologous immunity is recognized as a significant barrier to transplant tolerance. Whereas it has been established that pathogen-elicited memory T cells can have high or low affinity for cross-reactive allogeneic peptide-MHC,the role of TCR affinity during heterologous immunity has not been explored. We established a model with which to investigate the impact of TCR-priming affinity on memory T cell populations following a graft rechallenge. In contrast to high-affinity priming,low-affinity priming elicited fully differentiated memory T cells with a CD45RB(hi) status. High CD45RB status enabled robust secondary responses in vivo,as demonstrated by faster graft rejection kinetics and greater proliferative responses. CD45RB blockade prolonged graft survival in low affinity-primed mice,but not in high affinity-primed mice. Mechanistically,low affinity-primed memory CD8(+) T cells produced more IL-2 and significantly upregulated IL-2Rα expression during rechallenge. We found that CD45RB(hi) status was also a stable marker of priming affinity within polyclonal CD8(+) T cell populations. Following high-affinity rechallenge,low affinity-primed CD45RB(hi) cells became CD45RB(lo),demonstrating that CD45RB status acts as an affinity-based differentiation switch on CD8(+) T cells. Thus,these data establish a novel mechanism by which CD45 isoforms tune low affinity-primed memory CD8(+) T cells to become potent secondary effectors following heterologous rechallenge. These findings have direct implications for allogeneic heterologous immunity by demonstrating that despite a lower precursor frequency,low-affinity priming is sufficient to generate memory cells that mediate potent secondary responses against a cross-reactive graft challenge.
View Publication
文献
Ludigs K et al. (FEB 2016)
Nature Communications 7 10554
NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions.
NLRC5 is a transcriptional regulator of MHC class I (MHCI),which maintains high MHCI expression particularly in T cells. Recent evidence highlights an important NK-T-cell crosstalk,raising the question on whether NLRC5 specifically modulates this interaction. Here we show that NK cells from Nlrc5-deficient mice exhibit moderate alterations in inhibitory receptor expression and responsiveness. Interestingly,NLRC5 expression in T cells is required to protect them from NK-cell-mediated elimination upon inflammation. Using T-cell-specific Nlrc5-deficient mice,we show that NK cells surprisingly break tolerance even towards 'self' Nlrc5-deficient T cells under inflammatory conditions. Furthermore,during chronic LCMV infection,the total CD8(+) T-cell population is severely decreased in these mice,a phenotype reverted by NK-cell depletion. These findings strongly suggest that endogenous T cells with low MHCI expression become NK-cell targets,having thus important implications for T-cell responses in naturally or therapeutically induced inflammatory conditions.
View Publication
文献
Fu X et al. (FEB 2016)
Plos One 11 2 e0148819
High-Dose Fluoride Impairs the Properties of Human Embryonic Stem Cells via JNK Signaling
Fluoride is a ubiquitous natural substance that is often used in dental products to prevent dental caries. The biphasic actions of fluoride imply that excessive systemic exposure to fluoride can cause harmful effects on embryonic development in both animal models and humans. However,insufficient information is available on the effects of fluoride on human embryonic stem cells (hESCs),which is a novel in vitro humanized model for analyzing the embryotoxicities of chemical compounds. Therefore,we investigated the effects of sodium fluoride (NaF) on the proliferation,differentiation and viability of H9 hESCs. For the first time,we showed that 1 mM NaF did not significantly affect the proliferation of hESCs but did disturb the gene expression patterns of hESCs during embryoid body (EB) differentiation. Higher doses of NaF (2 mM and above) markedly decreased the viability and proliferation of hESCs. The mode and underlying mechanism of high-dose NaF-induced cell death were further investigated by assessing the sub-cellular morphology,mitochondrial membrane potential (MMP),caspase activities,cellular reactive oxygen species (ROS) levels and activation of mitogen-activated protein kinases (MAPKs). High-dose NaF caused the death of hESCs via apoptosis in a caspase-mediated but ROS-independent pathway,coupled with an increase in the phospho-c-Jun N-terminal kinase (p-JNK) levels. Pretreatment with a pJNK-specific inhibitor (SP600125) could effectively protect hESCs from NaF-induced cell death in a concentration- and time-dependent manner. These findings suggest that NaF might interfere with early human embryogenesis by disturbing the specification of the three germ layers as well as osteogenic lineage commitment and that high-dose NaF could cause apoptosis through a JNK-dependent pathway in hESCs.
View Publication
文献
Billing AM et al. (FEB 2016)
Scientific reports 6 21507
Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers.
Mesenchymal stem cells (MSC) are multipotent cells with great potential in therapy,reflected by more than 500 MSC-based clinical trials registered with the NIH. MSC are derived from multiple tissues but require invasive harvesting and imply donor-to-donor variability. Embryonic stem cell-derived MSC (ESC-MSC) may provide an alternative,but how similar they are to ex vivo MSC is unknown. Here we performed an in depth characterization of human ESC-MSC,comparing them to human bone marrow-derived MSC (BM-MSC) as well as human embryonic stem cells (hESC) by transcriptomics (RNA-seq) and quantitative proteomics (nanoLC-MS/MS using SILAC). Data integration highlighted and validated a central role of vesicle-mediated transport and exosomes in MSC biology and also demonstrated,through enrichment analysis,their versatility and broad application potential. Particular emphasis was placed on comparing profiles between ESC-MSC and BM-MSC and assessing their equivalency. Data presented here shows that differences between ESC-MSC and BM-MSC are similar in magnitude to those reported for MSC of different origin and the former may thus represent an alternative source for therapeutic applications. Finally,we report an unprecedented coverage of MSC CD markers,as well as membrane associated proteins which may benefit immunofluorescence-based applications and contribute to a refined molecular description of MSC.
View Publication
文献
Kanninen LK et al. (FEB 2016)
Experimental cell research 341 2 207--217
Hepatic differentiation of human pluripotent stem cells on human liver progenitor HepaRG-derived acellular matrix.
Human hepatocytes are extensively needed in drug discovery and development. Stem cell-derived hepatocytes are expected to be an improved and continuous model of human liver to study drug candidates. Generation of endoderm-derived hepatocytes from human pluripotent stem cells (hPSCs),including human embryonic stem cells and induced pluripotent stem cells,is a complex,challenging process requiring specific signals from soluble factors and insoluble matrices at each developmental stage. In this study,we used human liver progenitor HepaRG-derived acellular matrix (ACM) as a hepatic progenitor-specific matrix to induce hepatic commitment of hPSC-derived definitive endoderm (DE) cells. The DE cells showed much better attachment to the HepaRG ACM than other matrices tested and then differentiated towards hepatic cells,which expressed hepatocyte-specific makers. We demonstrate that Matrigel overlay induced hepatocyte phenotype and inhibited biliary epithelial differentiation in two hPSC lines studied. In conclusion,our study demonstrates that the HepaRG ACM,a hepatic progenitor-specific matrix,plays an important role in the hepatic differentiation of hPSCs.
View Publication
文献
Garcia-Bates TM et al. (MAR 2016)
Journal of immunology (Baltimore,Md. : 1950) 196 6 2870--8
Enhanced Cytotoxic CD8 T Cell Priming Using Dendritic Cell-Expressing Human Papillomavirus-16 E6/E7-p16INK4 Fusion Protein with Sequenced Anti-Programmed Death-1.
The incidence of human papillomavirus (HPV)-related head and neck squamous cell carcinoma has increased in recent decades,though HPV prevention vaccines may reduce this rise in the future. HPV-related cancers express the viral oncoproteins E6 and E7. The latter inactivates the tumor suppressor protein retinoblastoma (Rb),which leads to the overexpression of p16(INK4) protein,providing unique Ags for therapeutic HPV-specific cancer vaccination. We developed potential adenoviral vaccines that express a fusion protein of HPV-16 E6 and E7 (Ad.E6E7) alone or fused with p16 (Ad.E6E7p16) and also encoding an anti-programmed death (PD)-1 Ab. Human monocyte-derived dendritic cells (DC) transduced with Ad.E6E7 or Ad.E6E7p16 with or without Ad.αPD1 were used to activate autologous CD8 CTL in vitro. CTL responses were tested against naturally HPV-infected head and neck squamous cell carcinoma cells using IFN-γ ELISPOT and [(51)Cr]release assay. Surprisingly,stimulation and antitumor activity of CTL were increased after incubation with Ad.E6E7p16-transduced DC (DC.E6E7p16) compared with Ad.E6E7 (DC.E6E7),a result that may be due to an effect of p16 on cyclin-dependent kinase 4 levels and IL-12 secretion by DC. Moreover,the beneficial effect was most prominent when anti-PD-1 was introduced during the second round of stimulation (after initial priming). These data suggest that careful sequencing of Ad.E6E7.p16 with Ad.αPD1 could improve antitumor immunity against HPV-related tumors and that p16 may enhance the immunogenicity of DC,through cyclin-dependent pathways,Th1 cytokine secretion,and by adding a nonviral Ag highly overexpressed in HPV-induced cancers.
View Publication
文献
Bassa LM et al. (JAN 2016)
Phytomedicine : international journal of phytotherapy and phytopharmacology 23 1 87--94
Rhodiola crenulata induces an early estrogenic response and reduces proliferation and tumorsphere formation over time in MCF7 breast cancer cells.
BACKGROUND Rhodiola crenulata is a Tibetan mountainous plant,commonly used in Eastern alternative medicine. Many phytochemicals possess estrogenic activity,a critical regulator of proliferation in mammary epithelial cells. We have previously characterized anti-cancer properties of R. crenulata in aggressive triple negative breast cancer cells,lacking the expression of estrogen receptor. Currently,it is unknown whether R. crenulata exerts estrogenic effects and as such consumption may be a concern for women with estrogen receptor positive breast cancer that use Rhodiola sp. to relieve mild to moderate depression. PURPOSE In this study,we wished to determine whether a hydroalcoholic fraction of the R. crenulata root extract exhibits estrogenic activity in estrogen receptor positive (ER+) breast cancer cells in vitro and whether it affects normal mammary epithelial ER target gene expression in vivo. METHODS ER transcriptional activity was analyzed in MCF7 cells expressing an ERE reporter construct and confirmed via qPCR of endogenous ER target genes. We also monitored cellular proliferation over time. Additionally,to assess stem-like properties in MCF7 cells,we performed a tumorsphere formation assay under anchorage independent conditions. We examined whether R. crenulata treatment reduced $$-catenin levels via Western blotting and measured $$-catenin transcriptional activity by a reporter assay. To examine the effects of R. crenulata on normal mammary epithelial cells,we performed immunohistochemical staining of ER and PR in the mammary glands of mice fed R. crenulata for 12 weeks. RESULTS We show an initial activation of ER transcriptional activity by dual reporter assay,qPCR and proliferation of MCF7 ER+ cells in response to 24 h of R. crenulata treatment. However,upon longer treatment basal and R. crenulata induced transcriptional activity was suppressed. There was a decrease in cell doubling times and a decrease in tumorsphere formation. In association with these changes,ER$$ transcript levels were decreased and active $$-catenin levels were reduced in the cells treated for 2 weeks. Finally,we show no change in estrogen targets in normal mammary cells in vivo. CONCLUSION These data suggest that the R. crenulata extract contains components with estrogenic activity. However,R. crenulata treatment could still be protective in ER+ breast cancer cells,as longer treatment reduced the transcriptional activity of $$-catenin and ER responses leading to reduced proliferation and tumorsphere formation. Furthermore,administration of 20 mg/kg/day R. crenulata to mice did not have an observable effect on mammary epithelial ER$$ target gene expression in vivo.
View Publication
文献
He X et al. (MAY 2016)
Nucleic acids research 44 9 e85
Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which,however,has focused on HDR-based strategies and was proven inefficient. Here,we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs,and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy,integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells,and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells.
View Publication
文献
Takayama Y and Kida YS (FEB 2016)
PloS one 11 2 e0148559
In Vitro Reconstruction of Neuronal Networks Derived from Human iPS Cells Using Microfabricated Devices.
Morphology and function of the nervous system is maintained via well-coordinated processes both in central and peripheral nervous tissues,which govern the homeostasis of organs/tissues. Impairments of the nervous system induce neuronal disorders such as peripheral neuropathy or cardiac arrhythmia. Although further investigation is warranted to reveal the molecular mechanisms of progression in such diseases,appropriate model systems mimicking the patient-specific communication between neurons and organs are not established yet. In this study,we reconstructed the neuronal network in vitro either between neurons of the human induced pluripotent stem (iPS) cell derived peripheral nervous system (PNS) and central nervous system (CNS),or between PNS neurons and cardiac cells in a morphologically and functionally compartmentalized manner. Networks were constructed in photolithographically microfabricated devices with two culture compartments connected by 20 microtunnels. We confirmed that PNS and CNS neurons connected via synapses and formed a network. Additionally,calcium-imaging experiments showed that the bundles originating from the PNS neurons were functionally active and responded reproducibly to external stimuli. Next,we confirmed that CNS neurons showed an increase in calcium activity during electrical stimulation of networked bundles from PNS neurons in order to demonstrate the formation of functional cell-cell interactions. We also confirmed the formation of synapses between PNS neurons and mature cardiac cells. These results indicate that compartmentalized culture devices are promising tools for reconstructing network-wide connections between PNS neurons and various organs,and might help to understand patient-specific molecular and functional mechanisms under normal and pathological conditions.
View Publication