Effect of Melatonin in Epithelial Mesenchymal Transition Markers and Invasive Properties of Breast Cancer Stem Cells of Canine and Human Cell Lines.
Cancer stem cells (CSCs) have been associated with metastasis and therapeutic resistance and can be generated via epithelial mesenchymal transition (EMT). Some studies suggest that the hormone melatonin acts in CSCs and may participate in the inhibition of the EMT. The objectives of this study were to evaluate the formation of mammospheres from the canine and human breast cancer cell lines,CMT-U229 and MCF-7,and the effects of melatonin treatment on the modulation of stem cell and EMT molecular markers: OCT4,E-cadherin,N-cadherin and vimentin,as well as on cell viability and invasiveness of the cells from mammospheres. The CMT-U229 and MCF-7 cell lines were subjected to three-dimensional culture in special medium for stem cells. The phenotype of mammospheres was first evaluated by flow cytometry (CD44+/CD24low/- marking). Cell viability was measured by MTT colorimetric assay and the expression of the proteins OCT4,E-cadherin,N-cadherin and vimentin was evaluated by immunofluorescence and quantified by optical densitometry. The analysis of cell migration and invasion was performed in Boyden Chamber. Flow cytometry proved the stem cell phenotype with CD44+/CD24low/- positive marking for both cell lines. Cell viability of CMT-U229 and MCF-7 cells was reduced after treatment with 1mM melatonin for 24 h (Ptextless0.05). Immunofluorescence staining showed increased E-cadherin expression (Ptextless0.05) and decreased expression of OCT4,N-cadherin and vimentin (Ptextless0.05) in both cell lines after treatment with 1 mM melatonin for 24 hours. Moreover,treatment with melatonin was able to reduce cell migration and invasion in both cell lines when compared to control group (Ptextless0.05). Our results demonstrate that melatonin shows an inhibitory role in the viability and invasiveness of breast cancer mammospheres as well as in modulating the expression of proteins related to EMT in breast CSCs,suggesting its potential anti-metastatic role in canine and human breast cancer cell lines.
View Publication
文献
Chin CJ et al. (MAR 2016)
Stem Cells 34 5 1239--1250
Genetic Tagging During Human Mesoderm Differentiation Reveals Tripotent Lateral Plate Mesodermal Progenitors
Although clonal studies of lineage potential have been extensively applied to organ specific stem and progenitor cells,much less is known about the clonal origins of lineages formed from the germ layers in early embryogenesis. We applied lentiviral tagging followed by vector integration site analysis (VISA) with high-throughput sequencing to investigate the ontogeny of the hematopoietic,endothelial and mesenchymal lineages as they emerge from human embryonic mesoderm. In contrast to studies that have used VISA to track differentiation of self-renewing stem cell clones that amplify significantly over time,we focused on a population of progenitor clones with limited self-renewal capability. Our analyses uncovered the critical influence of sampling on the interpretation of lentiviral tag sharing,particularly among complex populations with minimal clonal duplication. By applying a quantitative framework to estimate the degree of undersampling we revealed the existence of tripotent mesodermal progenitors derived from pluripotent stem cells,and the subsequent bifurcation of their differentiation into bipotent endothelial/hematopoietic or endothelial/mesenchymal progenitors. This article is protected by copyright. All rights reserved.
View Publication
文献
Shirai T et al. (MAR 2016)
The Journal of Experimental Medicine 213 3 337--54
The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease.
Abnormal glucose metabolism and enhanced oxidative stress accelerate cardiovascular disease,a chronic inflammatory condition causing high morbidity and mortality. Here,we report that in monocytes and macrophages of patients with atherosclerotic coronary artery disease (CAD),overutilization of glucose promotes excessive and prolonged production of the cytokines IL-6 and IL-1β,driving systemic and tissue inflammation. In patient-derived monocytes and macrophages,increased glucose uptake and glycolytic flux fuel the generation of mitochondrial reactive oxygen species,which in turn promote dimerization of the glycolytic enzyme pyruvate kinase M2 (PKM2) and enable its nuclear translocation. Nuclear PKM2 functions as a protein kinase that phosphorylates the transcription factor STAT3,thus boosting IL-6 and IL-1β production. Reducing glycolysis,scavenging superoxide and enforcing PKM2 tetramerization correct the proinflammatory phenotype of CAD macrophages. In essence,PKM2 serves a previously unidentified role as a molecular integrator of metabolic dysfunction,oxidative stress and tissue inflammation and represents a novel therapeutic target in cardiovascular disease.
View Publication
文献
Touboul T et al. (JUN 2016)
Journal of Hepatology 64 6 1315--1326
Stage-specific regulation of the WNT/??-catenin pathway enhances differentiation of hESCs into hepatocytes
Background & Aims Hepatocytes differentiated from human embryonic stem cells (hESCs) have the potential to overcome the shortage of primary hepatocytes for clinical use and drug development. Many strategies for this process have been reported,but the functionality of the resulting cells is incomplete. We hypothesize that the functionality of hPSC-derived hepatocytes might be improved by making the differentiation method more similar to normal in vivo hepatic development. Methods We tested combinations of growth factors and small molecules targeting candidate signaling pathways culled from the literature to identify optimal conditions for differentiation of hESCs to hepatocytes,using qRT-PCR for stage-specific markers to identify the best conditions. Immunocytochemistry was then used to validate the selected conditions. Finally,induction of expression of metabolic enzymes in terminally differentiated cells was used to assess the functionality of the hESC-derived hepatocytes. Results Optimal differentiation of hESCs was attained using a 5-stage protocol. After initial induction of definitive endoderm (stage 1),we showed that inhibition of the WNT/??-catenin pathway during the 2nd and 3rd stages of differentiation was required to specify first posterior foregut,and then hepatic gut cells. In contrast,during the 4th stage of differentiation,we found that activation of the WNT/??-catenin pathway allowed generation of proliferative bipotent hepatoblasts,which then were efficiently differentiated into hepatocytes in the 5th stage by dual inhibition of TGF-?? and NOTCH signaling. Conclusion Here,we show that stage-specific regulation of the WNT/??-catenin pathway results in improved differentiation of hESCs to functional hepatocytes.
View Publication
文献
Bjö et al. (FEB 2016)
Scientific Reports 6 22083
Staphylococcus aureus-derived factors induce IL-10, IFN-γ and IL-17A-expressing FOXP3(+)CD161(+) T-helper cells in a partly monocyte-dependent manner.
Staphylococcus aureus (S. aureus) is a human pathogen as well as a frequent colonizer of skin and mucosa. This bacterium potently activates conventional T-cells through superantigens and it is suggested to induce T-cell cytokine-production as well as to promote a regulatory phenotype in T-cells in order to avoid clearance. This study aimed to investigate how S. aureus impacts the production of regulatory and pro-inflammatory cytokines and the expression of CD161 and HELIOS by peripheral CD4(+)FOXP3(+) T-cells. Stimulation of PBMC with S. aureus 161:2-cell free supernatant (CFS) induced expression of IL-10,IFN-γ and IL-17A in FOXP3(+) cells. Further,CD161 and HELIOS separated the FOXP3(+) cells into four distinct populations regarding cytokine-expression. Monocyte-depletion decreased S. aureus 161:2-induced activation of FOXP3(+) cells while pre-stimulation of purified monocytes with S. aureus 161:2-CFS and subsequent co-culture with autologous monocyte-depleted PBMC was sufficient to mediate activation of FOXP3(+) cells. Together,these data show that S. aureus potently induces FOXP3(+) cells and promotes a diverse phenotype with expression of regulatory and pro-inflammatory cytokines connected to increased CD161-expression. This could indicate potent regulation or a contribution of FOXP3(+) cells to inflammation and repression of immune-suppression upon encounter with S. aureus.
View Publication
文献
Turan S et al. (APR 2016)
Molecular Therapy 24 October 2015 1--12
Precise correction of disease mutations in induced pluripotent stem cells derived from patients with limb girdle muscular dystrophy
Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes,respectively. Using patient-derived induced pluripotent stem cells (iPSC),we corrected the dysferlin nonsense mutation c.5713CtextgreaterT; p.R1905X and the most common alpha-sarcoglycan mutation,missense c.229CtextgreaterT; p.R77C,by single-stranded oligonucleotide-mediated gene editing,using the CRISPR/Cas9 gene editing system to enhance the frequency of homology-directed repair. We demonstrated seamless,allele-specific correction at efficiencies of 0.7-1.5%. As an alternative,we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22,using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination,and DICE also utilized site-specific recombinases. With DICE and THRIP,we obtained targeting efficiencies after selection of ˜20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization,as shown by immunoblot and immunocytochemistry. In summary,we demonstrate for the first time precise correction of LGMD iPSC and validation of expression,opening the possibility of cell therapy utilizing these corrected iPSC.Molecular Therapy (2016); doi:10.1038/mt.2016.40.
View Publication
文献
Ayasoufi K et al. (APR 2016)
Journal of Immunology 196 7 3180--90
CD4 T Cell Help via B Cells Is Required for Lymphopenia-Induced CD8 T Cell Proliferation.
Ab-mediated lymphoablation is commonly used in solid organ and hematopoietic cell transplantation. However,these strategies fail to control pathogenic memory T cells efficiently and to improve long-term transplant outcomes significantly. Understanding the mechanisms of T cell reconstitution is critical for enhancing the efficacy of Ab-mediated depletion in sensitized recipients. Using a murine analog of anti-thymocyte globulin (mATG) in a mouse model of cardiac transplantation,we previously showed that peritransplant lymphocyte depletion induces rapid memory T cell proliferation and only modestly prolongs allograft survival. We now report that T cell repertoire following depletion is dominated by memory CD4 T cells. Additional depletion of these residual CD4 T cells severely impairs the recovery of memory CD8 T cells after mATG treatment. The CD4 T cell help during CD8 T cell recovery depends on the presence of B cells expressing CD40 and intact CD40/CD154 interactions. The requirement for CD4 T cell help is not limited to the use of mATG in heart allograft recipients,and it is observed in nontransplanted mice and after CD8 T cell depletion with mAb instead of mATG. Most importantly,limiting helper signals increases the efficacy of mATG in controlling memory T cell expansion and significantly extends heart allograft survival in sensitized recipients. Our findings uncover the novel role for helper memory CD4 T cells during homeostatic CD8 T cell proliferation and open new avenues for optimizing lymphoablative therapies in allosensitized patients.
View Publication
文献
Richardson T et al. (APR 2015)
Acta Biomaterialia 35 153--165
Capsule stiffness regulates the efficiency of pancreatic differentiation of human embryonic stem cells
Encapsulation of donor islets using a hydrogel material is a well-studied strategy for islet transplantation,which protects donor islets from the host immune response. Replacement of donor islets by human embryonic stem cell (hESC) derived islets will also require a means of immune-isolating hESCs by encapsulation. However,a critical consideration of hESC differentiation is the effect of surrounding biophysical environment,in this case capsule biophysical properties,on differentiation. The objective of this study,thus,was to evaluate the effect of capsule properties on growth,viability,and differentiation of encapsulated hESCs throughout pancreatic induction. It was observed that even in the presence of soluble chemical cues for pancreatic induction,substrate properties can significantly modulate pancreatic differentiation,hence necessitating careful tuning of capsule properties. Capsules in the range of 4-7. kPa supported cell growth and viability,whereas capsules of higher stiffness suppressed cell growth. While an increase in capsule stiffness enhanced differentiation at the intermediate definitive endoderm (DE) stage,increased stiffness strongly suppressed pancreatic progenitor (PP) induction. Signaling pathway analysis indicated an increase in pSMAD/pAKT levels with substrate stiffness likely the cause of enhancement of DE differentiation. In contrast,sonic hedgehog inhibition was more efficient under softer gel conditions,which is necessary for successful PP differentiation. Statement of Significance: Cell replacement therapy for type 1 diabetes (T1D),affecting millions of people worldwide,requires the immunoisolation of insulin-producing islets by encapsulation with a semi-impermeable material. Due to the shortage of donor islets,human pluripotent stem cell (hPSC) derived islets are an attractive alternative. However,properties of the encapsulating substrate are known to influence hPSC cell fate. In this work,we determine the effect of substrate stiffness on growth and pancreatic fate of encapsulated hPSCs. We precisely identify the range of substrate properties conducive for pancreatic cell fate,and also the mechanism by which substrate properties modify the cell signaling pathways and hence cell fate. Such information will be critical in driving regenerative cell therapy for long term treatment of T1D.
View Publication
文献
Konki M et al. (FEB 2016)
Scientific reports 6 February 22190
Epigenetic Silencing of the Key Antioxidant Enzyme Catalase in Karyotypically Abnormal Human Pluripotent Stem Cells.
Epigenomic regulation is likely to be important in the maintenance of genomic integrity of human pluripotent stem cells,however,the mechanisms are unknown. We explored the epigenomes and transcriptomes of human pluripotent stem cells before and after spontaneous transformation to abnormal karyotypes and in correlation to cancer cells. Our results reveal epigenetic silencing of Catalase,a key regulator of oxidative stress and DNA damage control in abnormal cells. Our findings provide novel insight into the mechanisms associated with spontaneous transformation of human pluripotent stem cells towards malignant fate. The same mechanisms may control the genomic stability of cells in somatic tissues.
View Publication
文献
York D et al. (DEC 2016)
BMC Biotechnology 16 1 23
Generating aldehyde-tagged antibodies with high titers and high formylglycine yields by supplementing culture media with copper(II)
BACKGROUND The ability to site-specifically conjugate a protein to a payload of interest (e.g.,a fluorophore,small molecule pharmacophore,oligonucleotide,or other protein) has found widespread application in basic research and drug development. For example,antibody-drug conjugates represent a class of biotherapeutics that couple the targeting specificity of an antibody with the chemotherapeutic potency of a small molecule drug. While first generation antibody-drug conjugates (ADCs) used random conjugation approaches,next-generation ADCs are employing site-specific conjugation. A facile way to generate site-specific protein conjugates is via the aldehyde tag technology,where a five amino acid consensus sequence (CXPXR) is genetically encoded into the protein of interest at the desired location. During protein expression,the Cys residue within this consensus sequence can be recognized by ectopically-expressed formylglycine generating enzyme (FGE),which converts the Cys to a formylglycine (fGly) residue. The latter bears an aldehyde functional group that serves as a chemical handle for subsequent conjugation. RESULTS The yield of Cys conversion to fGly during protein production can be variable and is highly dependent on culture conditions. We set out to achieve consistently high yields by modulating culture conditions to maximize FGE activity within the cell. We recently showed that FGE is a copper-dependent oxidase that binds copper in a stoichiometric fashion and uses it to activate oxygen,driving enzymatic turnover. Building upon that work,here we show that by supplementing cell culture media with copper we can routinely reach high yields of highly converted protein. We demonstrate that cells incorporate copper from the media into FGE,which results in increased specific activity of the enzyme. The amount of copper required is compatible with large scale cell culture,as demonstrated in fed-batch cell cultures with antibody titers of 5 g textperiodcentered L(-1),specific cellular production rates of 75 pg textperiodcentered cell(-1) textperiodcentered d(-1),and fGly conversion yields of 95-98 %. CONCLUSIONS We describe a process with a high yield of site-specific formylglycine (fGly) generation during monoclonal antibody production in CHO cells. The conversion of Cys to fGly depends upon the activity of FGE,which can be ensured by supplementing the culture media with 50 uM copper(II) sulfate.
View Publication
文献
Zekri J et al. (MAR 2014)
Journal of bone oncology 3 1 25--35
The anti-tumour effects of zoledronic acid.
Bone is the most common site for metastasis in patients with solid tumours. Bisphosphonates are an effective treatment for preventing skeletal related events and preserving quality of life in these patients. Zoledronic acid (ZA) is the most potent osteoclast inhibitor and is licensed for the treatment of bone metastases. Clodronate and pamidronate are also licensed for this indication. In addition,ZA has been demonstrated to exhibit antitumour effect. Direct and indirect mechanisms of anti-tumour effect have been postulated and at many times proven. Evidence exists that ZA antitumour effect is mediated through inhibition of tumour cells proliferation,induction of apoptosis,synergistic/additive to inhibitory effect of cytotoxic agents,inhibition of angiogenesis,decrease tumour cells adhesion to bone,decrease tumour cells invasion and migration,disorganization of cell cytoskeleton and activation of specific cellular antitumour immune response. There is also clinical evidence from clinical trials that ZA improved long term survival outcome in cancer patients with and without bone metastases. In this review we highlight the preclinical and clinical studies investigating the antitumour effect of bisphosphonates with particular reference to ZA.
View Publication
文献
Swann J et al. ( 2016)
Virology journal 13 1 30
Cytosolic sulfotransferase 1A1 regulates HIV-1 minus-strand DNA elongation in primary human monocyte-derived macrophages.
BACKGROUND: The cellular sulfonation pathway modulates key steps of virus replication. This pathway comprises two main families of sulfonate-conjugating enzymes: Golgi sulfotransferases,which sulfonate proteins,glycoproteins,glycolipids and proteoglycans; and cytosolic sulfotransferases (SULTs),which sulfonate various small molecules including hormones,neurotransmitters,and xenobiotics. Sulfonation controls the functions of numerous cellular factors such as those involved in cell-cell interactions,cell signaling,and small molecule detoxification. We previously showed that the cellular sulfonation pathway regulates HIV-1 gene expression and reactivation from latency. Here we show that a specific cellular sulfotransferase can regulate HIV-1 replication in primary human monocyte-derived macrophages (MDMs) by yet another mechanism,namely reverse transcription. METHODS: MDMs were derived from monocytes isolated from donor peripheral blood mononuclear cells (PBMCs) obtained from the San Diego Blood Bank. After one week in vitro cell culture under macrophage-polarizing conditions,MDMs were transfected with sulfotranserase-specific or control siRNAs and infected with HIV-1 or SIV constructs expressing a luciferase reporter. Infection levels were subsequently monitored by luminescence. Western blotting was used to assay siRNA knockdown and viral protein levels,and qPCR was used to measure viral RNA and DNA products. RESULTS: We demonstrate that the cytosolic sulfotransferase SULT1A1 is highly expressed in primary human MDMs,and through siRNA knockdown experiments,we show that this enzyme promotes infection of MDMs by single cycle VSV-G pseudotyped human HIV-1 and simian immunodeficiency virus vectors and by replication-competent HIV-1. Quantitative PCR analysis revealed that SULT1A1 affects HIV-1 replication in MDMs by modulating the kinetics of minus-strand DNA elongation during reverse transcription. CONCLUSIONS: These studies have identified SULT1A1 as a cellular regulator of HIV-1 reverse transcription in primary human MDMs. The normal substrates of this enzyme are small phenolic-like molecules,raising the possibility that one or more of these substrates may be involved. Targeting SULT1A1 and/or its substrate(s) may offer a novel host-directed strategy to improve HIV-1 therapeutics.
View Publication