Chou S-J et al. ( 2016)
Scientific reports 6 23661
Impaired ROS Scavenging System in Human Induced Pluripotent Stem Cells Generated from Patients with MERRF Syndrome.
Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a mitochondrial disorder characterized by myoclonus epilepsy,generalized seizures,ataxia and myopathy. MERRF syndrome is primarily due to an A to G mutation at mtDNA 8344 that disrupts the mitochondrial gene for tRNA(Lys). However,the detailed mechanism by which this tRNA(Lys) mutation causes mitochondrial dysfunction in cardiomyocytes or neurons remains unclear. In this study,we generated human induced pluripotent stem cells (hiPSCs) that carry the A8344G genetic mutation from patients with MERRF syndrome. Compared with mutation-free isogenic hiPSCs,MERRF-specific hiPSCs (MERRF-hiPSCs) exhibited reduced oxygen consumption,elevated reactive oxygen species (ROS) production,reduced growth,and fragmented mitochondrial morphology. We sought to investigate the induction ability and mitochondrial function of cardiomyocyte-like cells differentiated from MERRF-hiPSCs. Our data demonstrate that that cardiomyocyte-like cells (MERRF-CMs) or neural progenitor cells (MERRF-NPCs) differentiated from MERRF-iPSCs also exhibited increased ROS levels and altered antioxidant gene expression. Furthermore,MERRF-CMs or -NPCs contained fragmented mitochondria,as evidenced by MitoTracker Red staining and transmission electron microscopy. Taken together,these findings showed that MERRF-hiPSCs and MERRF-CM or -NPC harboring the A8344G genetic mutation displayed contained mitochondria with an abnormal ultrastructure,produced increased ROS levels,and expressed upregulated antioxidant genes.
View Publication
文献
de Valle E et al. (APR 2016)
The Journal of Experimental Medicine 213 4 621--41
NFκB1 is essential to prevent the development of multiorgan autoimmunity by limiting IL-6 production in follicular B cells.
We examined the role of NFκB1 in the homeostasis and function of peripheral follicular (Fo) B cells. Aging mice lacking NFκB1 (Nfκb1(-/-)) develop lymphoproliferative and multiorgan autoimmune disease attributed in large part to the deregulated activity ofNfκb1(-/-)Fo B cells that produce excessive levels of the proinflammatory cytokine interleukin 6 (IL-6). Despite enhanced germinal center (GC) B cell differentiation,the formation of GC structures was severely disrupted in theNfκb1(-/-)mice. Bone marrow chimeric mice revealed that the Fo B cell-intrinsic loss of NFκB1 led to the spontaneous generation of GC B cells. This was primarily the result of an increase in IL-6 levels,which promotes the differentiation of Fo helper CD4(+)T cells and acts in an autocrine manner to reduce antigen receptor and toll-like receptor activation thresholds in a population of proliferating IgM(+)Nfκb1(-/-)Fo B cells. We demonstrate that p50-NFκB1 repressesIl-6transcription in Fo B cells,with the loss of NFκB1 also resulting in the uncontrolled RELA-driven transcription ofIl-6.Collectively,our findings identify a previously unrecognized role for NFκB1 in preventing multiorgan autoimmunity through its negative regulation ofIl-6gene expression in Fo B cells.
View Publication
文献
Vanden Bempt M et al. (MAR 2016)
Leukemia March 8 Epub ahead of print
Generation of the Fip1l1–Pdgfra fusion gene using CRISPR/Cas genome editing
Primary Cilium-Autophagy-Nrf2 (PAN) Axis Activation Commits Human Embryonic Stem Cells to a Neuroectoderm Fate
Under defined differentiation conditions,human embryonic stem cells (hESCs) can be directed toward a mesendoderm (ME) or neuroectoderm (NE) fate,the first decision during hESC differentiation. Coupled with lineage-specific G1 lengthening,a divergent ciliation pattern emerged within the first 24 hr of induced lineage specification,and these changes heralded a neuroectoderm decision before any neural precursor markers were expressed. By day 2,increased ciliation in NE precursors induced autophagy that resulted in the inactivation of Nrf2 and thereby relieved transcriptional activation of OCT4 and NANOG. Nrf2 binds directly to upstream regions of these pluripotency genes to promote their expression and repress NE derivation. Nrf2 suppression was sufficient to rescue poorly neurogenic iPSC lines. Only after these events had been initiated did neural precursor markers get expressed at day 4. Thus,we have identified a primary cilium-autophagy-Nrf2 (PAN) control axis coupled to cell-cycle progression that directs hESCs toward NE.
View Publication
文献
Glatigny S et al. (MAY 2016)
Journal of Immunology 196 9 3542--6
Cutting Edge: Integrin α4 Is Required for Regulatory B Cell Control of Experimental Autoimmune Encephalomyelitis.
The neutralization of integrin α4 (Itga4) is currently used as treatment in multiple sclerosis. Although most studies have focused on its function on lymphocyte migration to the CNS,we have uncovered the importance of Itga4 for the generation of regulatory B cells in peripheral immune organs and their control of pathogenic T cell response and CNS pathology. Our study underscores the importance of looking at the dual role of B cells in CNS autoimmunity and provides important perspectives regarding the efficacy and side effects associated with Itga4 neutralization and other B cell-targeting therapies.
View Publication
文献
North JR et al. (MAY 2016)
Journal of biotechnology 226 24--34
A novel approach for emerging and antibiotic resistant infections: Innate defense regulators as an agnostic therapy.
Innate Defense Regulators (IDRs) are short synthetic peptides that target the host innate immune system via an intracellular adaptor protein which functions at key signaling nodes. In this work,further details of the mechanism of action of IDRs have been discovered. The studies reported here show that the lead clinical IDR,SGX94,has broad-spectrum activity against Gram-negative and Gram-positive bacterial infections caused by intracellular or extracellular bacteria and also complements the actions of standard of care antibiotics. Based on in vivo and primary cell culture studies,this activity is shown to result from the primary action of SGX94 on tissue-resident cells and subsequent secondary signaling to activate myeloid-derived cells,resulting in enhanced bacterial clearance and increased survival. Data from non-clinical and clinical studies also show that SGX94 treatment modulates pro-inflammatory and anti-inflammatory cytokine levels,thereby mitigating the deleterious inflammatory consequences of innate immune activation. Since they act through host pathways to provide both broad-spectrum anti-infective capability as well as control of inflammation,IDRs are unlikely to be impacted by resistance mechanisms and offer potential clinical advantages in the fight against emerging and antibiotic resistant bacterial infections.
View Publication
文献
Vasu S et al. (MAR 2016)
Blood
Decitabine enhances Fc engineered anti-CD33 mAb mediated natural killer antibody dependent cellular cytotoxicity against AML blasts.
Acute myeloid leukemia (AML) is the most common type of acute leukemia affecting older individuals at a median age of 67 years. Resistance to intensive induction chemotherapy is the major cause of death in elderly AML; hence novel treatment strategies are warranted. CD33-directed antibody-drug conjugates (Gemtuzumab ozogamicin) have been shown to improve overall survival,validating CD33 as a target for antibody-based therapy of AML. Here we report the in vitro efficacy of BI 836858,a fully human,Fc-engineered,anti-CD33 antibody using AML cell lines and primary AML blasts as targets. BI 836858-opsonized AML cells significantly induced both autologous and allogeneic natural killer (NK)-cell degranulation and NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). In vitro treatment of AML blasts with decitabine (DAC) or 5-azacytidine,two hypomethylating agents that show efficacy in older patients,did not compromise BI 836858-induced NK cell-mediated ADCC. Evaluation of BI 836858-mediated ADCC in serial marrow AML aspirates in patients who received a ten-day course of DAC (pre-DAC,days 4,11 and 28 post-DAC) revealed significantly higher ADCC in samples at day 28 post-DAC when compared to pre-DAC treatment. Analysis of ligands (L) to activating receptors (NKG2D showed significantly increased NKG2DL expression in day 28 post-DAC samples compared to pre-DAC samples; when NKG2DL receptor was blocked using antibodies,BI 836858-mediated ADCC was significantly decreased,suggesting that DAC enhances AML blast susceptibility to BI 836858 by upregulating NKG2DL. These data provide a rationale for combination therapy of Fc-engineered antibodies such as BI 836858 with azanucleosides in elderly patients with AML.
View Publication
文献
Kourjian G et al. (MAY 2016)
Journal of Immunology 196 9 3595--607
HIV Protease Inhibitor-Induced Cathepsin Modulation Alters Antigen Processing and Cross-Presentation.
Immune recognition by T cells relies on the presentation of pathogen-derived peptides by infected cells,but the persistence of chronic infections calls for new approaches to modulate immune recognition. Ag cross-presentation,the process by which pathogen Ags are internalized,degraded,and presented by MHC class I,is crucial to prime CD8 T cell responses. The original degradation of Ags is performed by pH-dependent endolysosomal cathepsins. In this article,we show that HIV protease inhibitors (PIs) prescribed to HIV-infected persons variably modulate cathepsin activities in human APCs,dendritic cells and macrophages,and CD4 T cells,three cell subsets infected by HIV. Two HIV PIs acted in two complementary ways on cathepsin hydrolytic activities: directly on cathepsins and indirectly on their regulators by inhibiting Akt kinase activities,reducing NADPH oxidase 2 activation,and lowering phagolysosomal reactive oxygen species production and pH,which led to enhanced cathepsin activities. HIV PIs modified endolysosomal degradation and epitope production of proteins from HIV and other pathogens in a sequence-dependent manner. They altered cross-presentation of Ags by dendritic cells to epitope-specific T cells and T cell-mediated killing. HIV PI-induced modulation of Ag processing partly changed the MHC self-peptidome displayed by primary human cells. This first identification,to our knowledge,of prescription drugs modifying the regulation of cathepsin activities and the MHC-peptidome may provide an alternate therapeutic approach to modulate immune recognition in immune disease beyond HIV.
View Publication
文献
Zheng X et al. (MAR 2016)
eLife 5
Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration.
mTOR inhibition is beneficial in neurodegenerative disease models and its effects are often attributable to the modulation of autophagy and anti-apoptosis. Here,we report a neglected but important bioenergetic effect of mTOR inhibition in neurons. mTOR inhibition by rapamycin significantly preserves neuronal ATP levels,particularly when oxidative phosphorylation is impaired,such as in neurons treated with mitochondrial inhibitors,or in neurons derived from maternally inherited Leigh syndrome (MILS) patient iPS cells with ATP synthase deficiency. Rapamycin treatment significantly improves the resistance of MILS neurons to glutamate toxicity. Surprisingly,in mitochondrially defective neurons,but not neuroprogenitor cells,ribosomal S6 and S6 kinase phosphorylation increased over time,despite activation of AMPK,which is often linked to mTOR inhibition. A rapamycin-induced decrease in protein synthesis,a major energy-consuming process,may account for its ATP-saving effect. We propose that a mild reduction in protein synthesis may have the potential to treat mitochondria-related neurodegeneration.
View Publication
文献
Patzke C et al. (APR 2016)
The Journal of Experimental Medicine 213 4 499--515
Conditional deletion of textlessitextgreaterL1CAMtextless/itextgreater in human neurons impairs both axonal and dendritic arborization and action potential generation
textlessptextgreater Hundreds of textlessitalictextgreaterL1CAMtextless/italictextgreater gene mutations have been shown to be associated with congenital hydrocephalus,severe intellectual disability,aphasia,and motor symptoms. How such mutations impair neuronal function,however,remains unclear. Here,we generated human embryonic stem (ES) cells carrying a conditional textlessitalictextgreaterL1CAMtextless/italictextgreater loss-of-function mutation and produced precisely matching control and textlessitalictextgreaterL1CAMtextless/italictextgreater -deficient neurons from these ES cells. In analyzing two independent conditionally mutant ES cell clones,we found that deletion of textlessitalictextgreaterL1CAMtextless/italictextgreater dramatically impaired axonal elongation and,to a lesser extent,dendritic arborization. Unexpectedly,we also detected an ∼20–50% and ∼20–30% decrease,respectively,in the levels of ankyrinG and ankyrinB protein,and observed that the size and intensity of ankyrinG staining in the axon initial segment was significantly reduced. Overexpression of wild-type L1CAM,but not of the L1CAM point mutants R1166X and S1224L,rescued the decrease in ankyrin levels. Importantly,we found that the textlessitalictextgreaterL1CAMtextless/italictextgreater mutation selectively decreased activity-dependent Na textlesssuptextgreater+textless/suptextgreater -currents,altered neuronal excitability,and caused impairments in action potential (AP) generation. Thus,our results suggest that the clinical presentations of textlessitalictextgreaterL1CAMtextless/italictextgreater mutations in human patients could be accounted for,at least in part,by cell-autonomous changes in the functional development of neurons,such that neurons are unable to develop normal axons and dendrites and to generate normal APs. textless/ptextgreater
View Publication
文献
Francis KR et al. (APR 2016)
Nature medicine 22 4 388--396
Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/$$-catenin defects in neuronal cholesterol synthesis phenotypes.
Smith-Lemli-Opitz syndrome (SLOS) is a malformation disorder caused by mutations in DHCR7,which impair the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. SLOS results in cognitive impairment,behavioral abnormalities and nervous system defects,though neither affected cell types nor impaired signaling pathways are fully understood. Whether 7DHC accumulation or cholesterol loss is primarily responsible for disease pathogenesis is also unclear. Using induced pluripotent stem cells (iPSCs) from subjects with SLOS,we identified cellular defects that lead to precocious neuronal specification within SLOS derived neural progenitors. We also demonstrated that 7DHC accumulation,not cholesterol deficiency,is critical for SLOS-associated defects. We further identified downregulation of Wnt/$$-catenin signaling as a key initiator of aberrant SLOS iPSC differentiation through the direct inhibitory effects of 7DHC on the formation of an active Wnt receptor complex. Activation of canonical Wnt signaling prevented the neural phenotypes observed in SLOS iPSCs,suggesting that Wnt signaling may be a promising therapeutic target for SLOS.
View Publication
文献
Ohlemacher SK et al. (MAR 2016)
Stem Cells 34 6 1553--1562
Stepwise Differentiation of Retinal Ganglion Cells from Human Pluripotent Stem Cells Enables Analysis of Glaucomatous Neurodegeneration
Human pluripotent stem cells (hPSCs),including both embryonic and induced pluripotent stem cells,possess the unique ability to readily differentiate into any cell type of the body,including cells of the retina. Although previous studies have demonstrated the ability to differentiate hPSCs to a retinal lineage,the ability to derive retinal ganglion cells (RGCs) from hPSCs has been complicated by the lack of specific markers with which to identify these cells from a pluripotent source. In the current study,the definitive identification of hPSC-derived RGCs was accomplished by their directed,stepwise differentiation through an enriched retinal progenitor intermediary,with resultant RGCs expressing a full complement of associated features and proper functional characteristics. These results served as the basis for the establishment of induced pluripotent stem cells (iPSCs) from a patient with a genetically inherited form of glaucoma,which results in damage and loss of RGCs. Patient-derived RGCs specifically exhibited a dramatic increase in apoptosis,similar to the targeted loss of RGCs in glaucoma,which was significantly rescued by the addition of candidate neuroprotective factors. Thus,the current study serves to establish a method by which to definitively acquire and identify RGCs from hPSCs and demonstrates the ability of hPSCs to serve as an effective in vitro model of disease progression. Moreover,iPSC-derived RGCs can be utilized for future drug screening approaches to identify targets for the treatment of glaucoma and other optic neuropathies. Stem Cells 2016.
View Publication