Standardization and optimization of the hiPSC-based PluriLum assay for detection of embryonic and developmental toxicants
New approach methodologies (NAMs) for predicting embryotoxicity and developmental toxicity are urgently needed for generating human relevant data,while reducing turnover time and costs,and alleviating ethical concerns related to the use of animal models. We have previously developed the PluriLum assay,a NKX2.5-reporter gene 3D model using human-induced pluripotent stem cells (hiPSCs) that are genetically modified to enable the assessment of adverse effects of chemicals on the early-stage embryo. Aiming at improving the predictive value of the PluriLum assay for future screening purposes,we sought to introduce standardization steps to the protocol,improving the overall robustness of the PluriLum assay,as well as a shortening of the assay protocol. First,we showed that the initial size of embryoid bodies (EBs) is crucial for a proper differentiation into cardiomyocytes and overall reproducibility of the assay. When the starting diameter of the EBs exceeds 500 µm,robust differentiation can be anticipated. In terms of reproducibility,exposure to the fungicide epoxiconazole at smaller initial diameters resulted in a larger variation of the derived data,compared to more reliable concentration–response curves obtained using spheroids with larger initial diameters. We further investigated the ideal length of the differentiation protocol,resulting in a shortening of the PluriLum assay by 24 h to 7 days. Following exposure to the teratogens all-trans and 13-cis retinoic acid,both cardiomyocyte contraction and measurement of NKX2.5-derived luminescence were recorded with a similar or increased sensitivity after 6 days of differentiation when compared to the original 7 days. Finally,we have introduced an efficient step for enzymatic dissociation of the EBs at assay termination. This allows for an even splitting of the individual EBs and testing of additional endpoints other than the NKX2.5-luciferase reporter,which was demonstrated in this work by the simultaneous assessment of ATP levels. In conclusion,we have introduced standardizations and streamlined the PluriLum assay protocol to improve its suitability as a NAM for screening of a large number of chemicals for developmental toxicity testing.
View Publication
(Jan 2025)
Nature Communications 16
Gene-editing in patient and humanized-mice primary muscle stem cells rescues dysferlin expression in dysferlin-deficient muscular dystrophy
Dystrophy-associated fer-1-like protein (dysferlin) conducts plasma membrane repair. Mutations in the DYSF gene cause a panoply of genetic muscular dystrophies. We targeted a frequent loss-of-function,DYSF exon 44,founder frameshift mutation with mRNA-mediated delivery of SpCas9 in combination with a mutation-specific sgRNA to primary muscle stem cells from two homozygous patients. We observed a consistent >60% exon 44 re-framing,rescuing a full-length and functional dysferlin protein. A new mouse model harboring a humanized Dysf exon 44 with the founder mutation,hEx44mut,recapitulates the patients’ phenotype and an identical re-framing outcome in primary muscle stem cells. Finally,gene-edited murine primary muscle stem-cells are able to regenerate muscle and rescue dysferlin when transplanted back into hEx44mut hosts. These findings are the first to show that a CRISPR-mediated therapy can ameliorate dysferlin deficiency. We suggest that gene-edited primary muscle stem cells could exhibit utility,not only in treating dysferlin deficiency syndromes,but also perhaps other forms of muscular dystrophy. Dysferlin-deficient muscular dystrophy is a devastating and untreatable disease. Using Cas9,the authors restored dysferlin in muscle stem cells from patients ex vivo and show proof-of-concept for autologous cell replacement therapies in a new humanized mouse model.
View Publication
(Feb 2025)
Journal of Nanobiotechnology 23 5
AG73-GelMA/AlgMA hydrogels provide a stable microenvironment for the generation of pancreatic progenitor organoids
Patient specific induced pluripotent stem cells (iPSCs) derived ? cells represent an effective means for disease modeling and autologous diabetes cell replacement therapy. In this study,an AG73-5%gelatin methacryloyl (GelMA) /2% alginate methacrylate (AlgMA) hydrogel was employed to generate pancreatic progenitor (PP) organoids and improve stem cell-derived ? (SC-?) cell differentiation protocol. The laminin-derived homolog AG73,which mimics certain cell?matrix interactions,facilitates AKT signaling pathway activation to promote PDX1+/NKX6.1+ PP organoid formation and effectively modulates subsequent epithelial–mesenchymal transition (EMT) in the endocrine lineage. The 5%GelMA/2%AlgMA hydrogel mimics the physiological stiffness of the pancreas,providing the optimal mechanical stress and spatial structure for PP organoid differentiation. The Syndecan-4 (SDC4)-ITGAV complex plays a pivotal role in the early stages of pancreatic development by facilitating the formation of SOX9+/PDX1+ bipotent PPs. Our findings demonstrate that AG73-GelMA/AlgMA hydrogel-derived SC-? cells exhibit enhanced insulin secretion and accelerated hyperglycemia reversal in vivo. This study presents a cost-effective,stable,and efficient alternative for the comprehensive 3D culture of SC-? cells in vitro by mitigating the uncertainties associated with conventional culture methods.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12951-025-03266-5. Graphical Abstract
Supplementary InformationThe online version contains supplementary material available at 10.1186/s12951-025-03266-5.
View Publication
(Jul 2024)
Breast Cancer Research : BCR 26 1–2
Utilizing human cerebral organoids to model breast cancer brain metastasis in culture
BackgroundMetastasis,the spread,and growth of malignant cells at secondary sites within a patient’s body,accounts for over 90% of cancer-related mortality. Breast cancer is the most common tumor type diagnosed and the leading cause of cancer lethality in women in the United States. It is estimated that 10–16% breast cancer patients will have brain metastasis. Current therapies to treat patients with breast cancer brain metastasis (BCBM) remain palliative. This is largely due to our limited understanding of the fundamental molecular and cellular mechanisms through which BCBM progresses,which represents a critical barrier for the development of efficient therapies for affected breast cancer patients.MethodsPrevious research in BCBM relied on co-culture assays of tumor cells with rodent neural cells or rodent brain slice ex vivo. Given the need to overcome the obstacle for human-relevant host to study cell-cell communication in BCBM,we generated human embryonic stem cell-derived cerebral organoids to co-culture with human breast cancer cell lines. We used MDA-MB-231 and its brain metastatic derivate MDA-MB-231 Br-EGFP,other cell lines of MCF-7,HCC-1806,and SUM159PT. We leveraged this novel 3D co-culture platform to investigate the crosstalk of human breast cancer cells with neural cells in cerebral organoid.ResultsWe found that MDA-MB-231 and SUM159PT breast cancer cells formed tumor colonies in human cerebral organoids. Moreover,MDA-MB-231 Br-EGFP cells showed increased capacity to invade and expand in human cerebral organoids.ConclusionsOur co-culture model has demonstrated a remarkable capacity to discern the brain metastatic ability of human breast cancer cells in cerebral organoids. The generation of BCBM-like structures in organoid will facilitate the study of human tumor microenvironment in culture.
View Publication
(Apr 2024)
International Journal of Stem Cells 17 2
Energy Metabolism in Human Pluripotent Stem and Differentiated Cells Compared Using a Seahorse XF96 Extracellular Flux Analyzer
Evaluating cell metabolism is crucial during pluripotent stem cell (PSC) differentiation and somatic cell reprogramming as it affects cell fate. As cultured stem cells are heterogeneous,a comparative analysis of relative metabolism using existing metabolic analysis methods is difficult,resulting in inaccuracies. In this study,we measured human PSC basal metabolic levels using a Seahorse analyzer. We used fibroblasts,human induced PSCs,and human embryonic stem cells to monitor changes in basal metabolic levels according to cell number and determine the number of cells suitable for analysis. We evaluated normalization methods using glucose and selected the most suitable for the metabolic analysis of heterogeneous PSCs during the reprogramming stage. The response of fibroblasts to glucose increased with starvation time,with oxygen consumption rate and extracellular acidification rate responding most effectively to glucose 4 hours after starvation and declining after 5 hours of starvation. Fibroblasts and PSCs achieved appropriate responses to glucose without damaging their metabolism 2?4 and 2?3 hours after starvation,respectively. We developed a novel method for comparing basal metabolic rates of fibroblasts and PSCs,focusing on quantitative analysis of glycolysis and oxidative phosphorylation using glucose without enzyme inhibitors. This protocol enables efficient comparison of energy metabolism among cell types,including undifferentiated PSCs,differentiated cells,and cells undergoing cellular reprogramming,and addresses critical issues,such as differences in basal metabolic levels and sensitivity to normalization,providing valuable insights into cellular energetics.
View Publication
(Jun 2024)
Scientific Reports 14
FLI1 is associated with regulation of DNA methylation and megakaryocytic differentiation in FPDMM caused by a RUNX1 transactivation domain mutation
Familial platelet disorder with associated myeloid malignancies (FPDMM) is an autosomal dominant disease caused by heterozygous germline mutations in RUNX1. It is characterized by thrombocytopenia,platelet dysfunction,and a predisposition to hematological malignancies. Although FPDMM is a precursor for diseases involving abnormal DNA methylation,the DNA methylation status in FPDMM remains unknown,largely due to a lack of animal models and challenges in obtaining patient-derived samples. Here,using genome editing techniques,we established two lines of human induced pluripotent stem cells (iPSCs) with different FPDMM-mimicking heterozygous RUNX1 mutations. These iPSCs showed defective differentiation of hematopoietic progenitor cells (HPCs) and megakaryocytes (Mks),consistent with FPDMM. The FPDMM-mimicking HPCs showed DNA methylation patterns distinct from those of wild-type HPCs,with hypermethylated regions showing the enrichment of ETS transcription factor (TF) motifs. We found that the expression of FLI1,an ETS family member,was significantly downregulated in FPDMM-mimicking HPCs with a RUNX1 transactivation domain (TAD) mutation. We demonstrated that FLI1 promoted binding-site-directed DNA demethylation,and that overexpression of FLI1 restored their megakaryocytic differentiation efficiency and hypermethylation status. These findings suggest that FLI1 plays a crucial role in regulating DNA methylation and correcting defective megakaryocytic differentiation in FPDMM-mimicking HPCs with a RUNX1 TAD mutation.
View Publication
(Dec 2024)
Journal of Inflammation Research 17
Esophageal Cancer-Related Gene-4 Contributes to Lipopolysaccharide-Induced Ion Channel Dysfunction in hiPSC-Derived Cardiomyocytes
Background and PurposeEsophageal cancer-related gene-4 (ECRG4) participate in inflammation process and can interact with the innate immunity complex TLR4-MD2-CD14 on human granulocytes. In addition,ECRG4 participate in modulation of ion channel function and electrical activity of cardiomyocytes. However,the exact mechanism is unknown. This study aimed to test our hypothesis that ECRG4 contributes to inflammation-induced ion channel dysfunctions in cardiomyocytes.MethodsHuman-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) generated from three donors were treated with lipopolysaccharide (LPS) to establish an endotoxin-induced inflammatory model. Immunostaining,real-time PCR,and patch-clamp techniques were used for the study.ResultsECRG4 was detected in hiPSC-CMs at different differentiation time. LPS treatment increased ECRG4 expression in hiPSC-CMs. Knockdown of ECRG4 decreased the expression level of Toll-Like-Receptor 4 (TLR4,a LPS receptor) and its associated genes and inflammatory cytokines. Furthermore,ECRG4 knockdown shortened the action potential duration (APD) and intercepted LPS-induced APD prolongation by enhancing ISK (small conductance calcium-activated K channel current) and attenuating INCX (Na/Ca exchanger current). Overexpression of ECRG4 mimicked LPS effects on ISK and INCX,which could be prevented by NF?B signaling blockers.ConclusionThis study demonstrated that LPS effects on cardiac ion channel function were mediated by the upregulation of ECRG4,which affects NF?B signaling. Our findings support the roles of ECRG4 in inflammatory responses and the ion channel dysfunctions induced by LPS challenge.
View Publication
(Oct 2024)
eBioMedicine 109 1
Homology-independent targeted insertion-mediated derivation of M1-biased macrophages harbouring Megf10 and CD3? from human pluripotent stem cells
SummaryBackgroundMacrophages engineered with chimeric antigen receptors (CAR) are suitable for immunotherapy based on their immunomodulatory activity and ability to infiltrate solid tumours. However,the production and application of genetically edited,highly effective,and mass-produced CAR-modified macrophages (CAR-Ms) are challenging.MethodsHere,we used homology-independent targeted insertion (HITI) for site-directed CAR integration into the safe-harbour region of human pluripotent stem cells (hPSCs). This approach,together with a simple differentiation protocol,produced stable and highly effective CAR-Ms without heterogeneity.FindingsThese engineered cells phagocytosed cancer cells,leading to significant inhibition of cancer-cell proliferation in vitro and in vivo. Furthermore,the engineered CARs,which incorporated a combination of CD3? and Megf10 (referred to as FRP5M?),markedly enhanced the antitumour effect of CAR-Ms by promoting M1,but not M2,polarisation. FRP5M? promoted M1 polarisation via nuclear factor kappa B (NF-?B),ERK,and STAT1 signalling,and concurrently inhibited STAT3 signalling even under M2 conditions. These features of CAR-Ms modulated the tumour microenvironment by activating inflammatory signalling,inducing M1 polarisation of bystander non-CAR macrophages,and enhancing the infiltration of T cells in cancer spheroids.InterpretationOur findings suggest that CAR-Ms have promise as immunotherapeutics. In conclusion,the guided insertion of CAR containing CD3? and Megf10 domains is an effective strategy for the immunotherapy of solid tumours.FundingThis work was supported by KRIBB Research Initiative Program Grant (KGM4562431,KGM5282423) and a Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korean government (Ministry of Science and ICT,10.13039/501100003625Ministry of Health and Welfare) (22A0304L1-01).
View Publication
(May 2024)
Molecular Systems Biology 20 7
Uncovering the dynamics and consequences of RNA isoform changes during neuronal differentiation
Static gene expression programs have been extensively characterized in stem cells and mature human cells. However,the dynamics of RNA isoform changes upon cell-state-transitions during cell differentiation,the determinants and functional consequences have largely remained unclear. Here,we established an improved model for human neurogenesis in vitro that is amenable for systems-wide analyses of gene expression. Our multi-omics analysis reveals that the pronounced alterations in cell morphology correlate strongly with widespread changes in RNA isoform expression. Our approach identifies thousands of new RNA isoforms that are expressed at distinct differentiation stages. RNA isoforms mainly arise from exon skipping and the alternative usage of transcription start and polyadenylation sites during human neurogenesis. The transcript isoform changes can remodel the identity and functions of protein isoforms. Finally,our study identifies a set of RNA binding proteins as a potential determinant of differentiation stage-specific global isoform changes. This work supports the view of regulated isoform changes that underlie state-transitions during neurogenesis. Synopsis Multi-omics analysis of a newly established human neuronal cell differentiation model reveals widespread dynamic changes in RNA isoform expression,their functional consequences and potential determinants,providing evidence that they underlie cell-state-transitions during neurogenesis. Dynamic changes in RNA and protein levels are strongly correlated during all stages of neuronal differentiation.Nanopore sequencing (ONT-seq) during human neurogenesis reveals 12,019 non-annotated RNA isoforms,a large number of which are differentially expressed during differentiation.70% of new RNA isoforms result from the use of alternative transcription start sites (TSSs) or polyadenylation (pA) sites and exon skipping.RNA isoform changes underlie protein isoform changes during human neurogenesis as revealed by integrating ONT-seq,RNA-seq and proteomics time course data.RNA motif enrichment,RNA-seq and available CLIP-seq data uncover a set of RNA binding proteins (RBPs) as potential determinants of differentiation stage-specific global isoform changes. Multi-omics analysis of a newly established human neuronal cell differentiation model reveals widespread dynamic changes in RNA isoform expression,their functional consequences and potential determinants,providing evidence that they underlie cell-state-transitions during neurogenesis.
View Publication
(Jun 2025)
iScience 28 7
Human dorsal forebrain organoids show differentiation-state-specific protein secretion
SummaryThe human brain microenvironment undergoes dynamic changes during development,which have been incompletely characterized in in vitro models including neural organoids. Here,we used liquid chromatography-mass spectrometry to investigate proteome and secretome changes in human dorsal forebrain organoids derived from three hiPSC lines at days 20,35,and 50 of differentiation. Proteome and immunohistochemical analysis revealed reduced proliferation and increased differentiation of progenitor cells gradually over time. In contrast,secretome analysis showed distinct characteristics at each timepoint — notably,at day 35,the numbers of cell adhesion molecules,synaptic proteins,and proteases were increased. Taken together,we present a resource describing the dynamic features of a neural organoid proteome and secretome across different genetic backgrounds. We describe the unique niche composition of neural organoids during the period of neurogenesis and suggest that synaptic proteins may play a role in guiding neurogenesis. Graphical abstract Highlights•Proteomic analysis of DFOs on three time points shows neural differentiation•Protein secretion increases during peak neurogenesis at D35 and D50•Cell adhesion molecules,synapse proteins,and metalloproteases are mainly secreted at D35•Extracellular matrix proteins are predominantly secreted at D50 Natural sciences; Biological sciences; Neuroscience; Tissue Engineering
View Publication
(Jun 2025)
APL Bioengineering 9 2
Application of instant assembly of collagen to bioprint cardiac tissues
Advancing cardiac tissue engineering requires innovative fabrication techniques,including 3D bioprinting and tissue maturation,to enable the generation of new muscle for repairing or replacing damaged heart tissue. Recent advances in tissue engineering have highlighted the need for rapid,high-resolution bioprinting methods that preserve cell viability and maintain structural fidelity. Traditional collagen-based bioinks gel slowly,limiting their use in bioprinting. Here,we implement TRACE (tunable rapid assembly of collagenous elements),a macromolecular crowding-driven bioprinting technique that enables the immediate gelation of collagen bioinks infused with cells. This overcomes the need for extended incubation,allowing for direct bioprinting of engineered cardiac tissues with high fidelity. Unlike methods that rely on high-concentration acidic collagen or fibrin for gelation,TRACE achieves rapid bioink stabilization without altering the biochemical composition. This ensures greater versatility in bioink selection while maintaining functional tissue outcomes. Additionally,agarose slurry provides stable structural support,preventing tissue collapse while allowing nutrient diffusion. This approach better preserves complex tissue geometries during culture than gelatin-based support baths or polydimethylsiloxane (PDMS) molds. Our results demonstrate that TRACE enables the bioprinting of structurally stable cardiac tissues with high resolution. By supporting the fabrication of biomimetic tissues,TRACE represents a promising advancement in bioprinting cardiac models and other engineered tissues.
View Publication
(Jan 2025)
PeerJ 13 6213
Targeted correction of megabase-scale CNTN6 duplication in induced pluripotent stem cells and impacts on gene expression
Copy number variations of the human CNTN6 gene,resulting from megabase-scale microdeletions or microduplications in the 3p26.3 region,are frequently implicated in neurodevelopmental disorders such as intellectual disability and developmental delay. However,duplication of the full-length human CNTN6 gene presents with variable penetrance,resulting in phenotypes that range from neurodevelopmental disorders to no visible pathologies,even within the same family. Previously,we obtained a set of induced pluripotent stem cell lines derived from a patient with a CNTN6 gene duplication and from two healthy donors. Our findings demonstrated that CNTN6 expression in neurons carrying the duplication was significantly reduced. Additionally,the expression from the CNTN6 duplicated allele was markedly lower compared to the wild-type allele. Here,we first introduce a system for correcting megabase-scale duplications in induced pluripotent stem cells and secondly analyze the impact of this correction on CNTN6 gene expression. We showed that the deletion of one copy of the CNTN6 duplication did not affect the expression levels of the remaining allele in the neuronal cells.
View Publication