Identifying SETBP1 haploinsufficiency molecular pathways to improve patient diagnosis using induced pluripotent stem cells and neural disease modelling
BackgroundSETBP1 Haploinsufficiency Disorder (SETBP1-HD) is characterised by mild to moderate intellectual disability,speech and language impairment,mild motor developmental delay,behavioural issues,hypotonia,mild facial dysmorphisms,and vision impairment. Despite a clear link between SETBP1 mutations and neurodevelopmental disorders the precise role of SETBP1 in neural development remains elusive. We investigate the functional effects of three SETBP1 genetic variants including two pathogenic mutations p.Glu545Ter and SETBP1 p.Tyr1066Ter,resulting in removal of SKI and/or SET domains,and a point mutation p.Thr1387Met in the SET domain.MethodsGenetic variants were introduced into induced pluripotent stem cells (iPSCs) and subsequently differentiated into neurons to model the disease. We measured changes in cellular differentiation,SETBP1 protein localisation,and gene expression changes.ResultsThe data indicated a change in the WNT pathway,RNA polymerase II pathway and identified GATA2 as a central transcription factor in disease perturbation. In addition,the genetic variants altered the expression of gene sets related to neural forebrain development matching characteristics typical of the SETBP1-HD phenotype.LimitationsThe study investigates changes in cellular function in differentiation of iPSC to neural progenitor cells as a human model of SETBP1 HD disorder. Future studies may provide additional information relevant to disease on further neural cell specification,to derive mature neurons,neural forebrain cells,or brain organoids.ConclusionsWe developed a human SETBP1-HD model and identified perturbations to the WNT and POL2RA pathway,genes regulated by GATA2. Strikingly neural cells for both the SETBP1 truncation mutations and the single nucleotide variant displayed a SETBP1-HD-like phenotype.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13229-024-00625-1.
View Publication
(Jul 2024)
Molecular Metabolism 88 12
Tissue Inhibitor of Metalloproteinase 3 (TIMP3) mutations increase glycolytic activity and dysregulate glutamine metabolism in RPE cells
ObjectivesMutations in Tissue Inhibitor of Metalloproteinases 3 (TIMP3) cause Sorsby's Fundus Dystrophy (SFD),a dominantly inherited,rare form of macular degeneration that results in vision loss. TIMP3 is synthesized primarily by retinal pigment epithelial (RPE) cells,which constitute the outer blood-retinal barrier. One major function of RPE is the synthesis and transport of vital nutrients,such as glucose,to the retina. Recently,metabolic dysfunction in RPE cells has emerged as an important contributing factor in retinal degenerations. We set out to determine if RPE metabolic dysfunction was contributing to SFD pathogenesis.MethodsQuantitative proteomics was conducted on RPE of mice expressing the S179C variant of TIMP3,known to be causative of SFD in humans. Proteins found to be differentially expressed (P < 0.05) were analyzed using statistical overrepresentation analysis to determine enriched pathways,processes,and protein classes using g:profiler and PANTHER Gene Ontology. We examined the effects of mutant TIMP3 on RPE metabolism using human ARPE-19 cells expressing mutant S179C TIMP3 and patient-derived induced pluripotent stem cell-derived RPE (iRPE) carrying the S204C TIMP3 mutation. RPE metabolism was directly probed using isotopic tracing coupled with GC/MS analysis. Steady state [U–13C6] glucose isotopic tracing was preliminarily conducted on S179C ARPE-19 followed by [U–13C6] glucose and [U–13C5] glutamine isotopic tracing in SFD iRPE cells.ResultsQuantitative proteomics and enrichment analysis conducted on RPE of mice expressing mutant S179C TIMP3 identified differentially expressed proteins that were enriched for metabolism-related pathways and processes. Notably these results highlighted dysregulated glycolysis and glucose metabolism. Stable isotope tracing experiments with [U–13C6] glucose demonstrated enhanced glucose utilization and glycolytic activity in S179C TIMP3 APRE-19 cells. Similarly,[U–13C6] glucose tracing in SFD iRPE revealed increased glucose contribution to glycolysis and the TCA cycle. Additionally,[U–13C5] glutamine tracing found evidence of altered malic enzyme activity.ConclusionsThis study provides important information on the dysregulation of RPE glucose metabolism in SFD and implicates a potential commonality with other retinal degenerative diseases,emphasizing RPE cellular metabolism as a therapeutic target. Highlights•SFD mice display alterations in proteins associated with metabolism.•SFD RPE cells have increased glycolytic activity and glucose contribution to the TCA cycle.•Glutamine contribution to energy metabolism is unaltered in SFD RPE cells however there is reduced malic enzyme activity.•SFD RPE cells display metabolic dysfunction potentially implicating metabolism as a viable therapeutic target.
View Publication
(Nov 2024)
Nature Communications 15
Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury
The reconstruction of damaged neural circuits is critical for neurological repair after brain injury. Classical brain-computer interfaces (BCIs) allow direct communication between the brain and external controllers to compensate for lost functions. Importantly,there is increasing potential for generalized BCIs to input information into the brains to restore damage,but their effectiveness is limited when a large injured cavity is caused. Notably,it might be overcome by transplantation of brain organoids into the damaged region. Here,we construct innovative BCIs mediated by implantable organoids,coined as organoid-brain-computer interfaces (OBCIs). We assess the prolonged safety and feasibility of the OBCIs,and explore neuroregulatory strategies. OBCI stimulation promotes progressive differentiation of grafts and enhances structural-functional connections within organoids and the host brain,promising to repair the damaged brain via regenerating and regulating,potentially directing neurons to preselected targets and recovering functional neural networks in the future. Damaged neural circuits could be improved by generalized BCIs via inputting information into the brains,which is restricted when a large injured cavity caused. Here,the authors construct BCIs mediated by organoid grafts to repair the damaged brain
View Publication
(Jun 2024)
Molecular Therapy. Methods & Clinical Development 32 3
Engineering single-cycle MeV vector for CRISPR-Cas9 gene editing
CRISPR-Cas9-mediated gene editing has vast applications in basic and clinical research and is a promising tool for several disorders. Our lab previously developed a non-integrating RNA virus,measles virus (MeV),as a single-cycle reprogramming vector by replacing the viral attachment protein with the reprogramming factors for induced pluripotent stem cell generation. Encouraged by the MeV reprogramming vector efficiency,in this study,we develop a single-cycle MeV vector to deliver the gRNA(s) and Cas9 nuclease to human cells for efficient gene editing. We show that the MeV vector achieved on-target gene editing of the reporter (mCherry) and endogenous genes (HBB and FANCD1) in human cells. Additionally,the MeV vector achieved precise knock-in via homology-directed repair using a single-stranded oligonucleotide donor. The MeV vector is a new and flexible platform for gene knock-out and knock-in modifications in human cells,capable of incorporating new technologies as they are developed. Graphical abstract Devaux and colleagues developed a novel single-cycle measles vector allowing gene editing of human cells. They show that Measles can express the CRISPR-Cas9 and gRNA from one genome. Finally,they demonstrate that these vectors can efficiently perform KO and knock-in in human cells without excessive off-target effects.
View Publication
(Oct 2024)
NPJ Parkinson's Disease 10
Direct and indirect regulation of ?-glucocerebrosidase by the transcription factors USF2 and ONECUT2
Mutations in GBA1 encoding the lysosomal enzyme ?-glucocerebrosidase (GCase) are among the most prevalent genetic susceptibility factors for Parkinson’s disease (PD),with 10–30% of carriers developing the disease. To identify genetic modifiers contributing to the incomplete penetrance,we examined the effect of 1634 human transcription factors (TFs) on GCase activity in lysates of an engineered human glioblastoma line homozygous for the pathogenic GBA1 L444P variant. Using an arrayed CRISPR activation library,we uncovered 11 TFs as regulators of GCase activity. Among these,activation of MITF and TFEC increased lysosomal GCase activity in live cells,while activation of ONECUT2 and USF2 decreased it. While MITF,TFEC,and USF2 affected GBA1 transcription,ONECUT2 might control GCase trafficking. The effects of MITF,TFEC,and USF2 on lysosomal GCase activity were reproducible in iPSC-derived neurons from PD patients. Our study provides a systematic approach to identifying modulators of GCase activity and deepens our understanding of the mechanisms regulating GCase.
View Publication
(Jul 2025)
Bio-protocol 15 13
Derivation and Culture of Enriched Phrenic-Like Motor Neurons From Human iPSCs
The fatal motor neuron (MN) disease amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of the phrenic MNs (phMNs) controlling the activity of the diaphragm,leading to death by respiratory failure. Human experimental models to study phMNs are lacking,hindering the understanding of the mechanisms of phMN degeneration in ALS. Here,we describe a protocol to derive phrenic-like MNs from human induced pluripotent stem cells (hiPSC-phMNs) within 30 days. During spinal cord development,phMNs emerge from specific MN progenitors located in the dorsalmost MN progenitor (pMN) domain at cervical levels,under the control of a ventral-to-dorsal gradient of Sonic hedgehog (SHH) signaling and a rostro-caudal gradient of retinoic acid (RA). The method presented here uses optimized concentrations of RA and the SHH agonist purmorphamine,followed by fluorescence-activated cell sorting (FACS) of the resulting MN progenitor cells (MNPCs) based on a cell-surface protein (IGDCC3) enriched in hiPSC-phMNs. The resulting cultures are highly enriched in MNs expressing typical phMN markers. This protocol enables the generation of hiPSC-phMNs and is highly reproducible using several hiPSC lines,offering a disease-relevant system to study mechanisms of respiratory MN dysfunction. While the protocol has been validated in the context of ALS research,it can be adopted to study human phrenic MNs in other research fields where these neurons are of interest.
Key features
• This protocol generates enriched hiPSC-derived phrenic motor neuron cultures.• The protocol can be used to develop models to study human respiratory motor neuron disease.• The protocol allows the generation of phrenic motor neuron preparations with potential for motor neuron replacement strategies.• The protocol requires experience in hiPSC culturing and FACS-based cell sorting for a successful outcome.
View Publication
(May 2025)
Frontiers in Nutrition 12
Generation of bovine iPSCs from fetal fibroblasts for in vitro myogenesis and cultured meat
IntroductionEmerging biotechnologies are increasingly being explored for food production,including the development of cell-cultivated meat. Conventional approaches typically rely on satellite cell (SC) biopsies,which present challenges in scalability. Bovine induced pluripotent stem cells (biPSCs) represent a promising alternative due to their capacity for self-renewal and developmental plasticity.MethodsThis study utilized both lentiviral (integrating) and episomal (non-integrating) reprogramming strategies to generate biPSCs suitable for myogenic differentiation. Bovine fetal fibroblasts (bFFs) were reprogrammed using episomal vectors pMaster K and pCXB-EBNA1,leading to the emergence of putative iPSC colonies 13 days post-nucleofection. A clonal line,bFF-iPSCs pMK,was selected for further analysis.ResultsThe bFF-iPSCs pMK line expressed key pluripotency markers including alkaline phosphatase (AP),OCT4,SOX2,and NANOG,and was stably maintained for over 33 passages,although episomal plasmids remained detectable. in vitro myogenic differentiation was assessed by comparing this line to a previously established lentiviral reprogrammed line (bFF-iPSCs mOSKM). Both lines exhibited downregulation of pluripotency markers and upregulation of the early myogenic marker PAX3. By day 30,the bFF-iPSCs pMK line formed elongated,multinucleated cells characteristic of myotubes and displayed a corresponding gene expression profile.DiscussionThese results provide new insights into bovine in vitro myogenesis and its application in cultured meat production. While promising,the study also highlights the difficulty in achieving complete myogenic differentiation,indicating a need for further optimization of differentiation protocols. Graphical abstract
View Publication
(Mar 2024)
Nature Communications 15
BHLHE40/41 regulate microglia and peripheral macrophage responses associated with Alzheimer’s disease and other disorders of lipid-rich tissues
Genetic and experimental evidence suggests that Alzheimer’s disease (AD) risk alleles and genes may influence disease susceptibility by altering the transcriptional and cellular responses of macrophages,including microglia,to damage of lipid-rich tissues like the brain. Recently,sc/nRNA sequencing studies identified similar transcriptional activation states in subpopulations of macrophages in aging and degenerating brains and in other diseased lipid-rich tissues. We collectively refer to these subpopulations of microglia and peripheral macrophages as DLAMs. Using macrophage sc/nRNA-seq data from healthy and diseased human and mouse lipid-rich tissues,we reconstructed gene regulatory networks and identified 11 strong candidate transcriptional regulators of the DLAM response across species. Loss or reduction of two of these transcription factors,BHLHE40/41,in iPSC-derived microglia and human THP-1 macrophages as well as loss of Bhlhe40/41 in mouse microglia,resulted in increased expression of DLAM genes involved in cholesterol clearance and lysosomal processing,increased cholesterol efflux and storage,and increased lysosomal mass and degradative capacity. These findings provide targets for therapeutic modulation of macrophage/microglial function in AD and other disorders affecting lipid-rich tissues. Factors regulating lipid and lysosomal clearance in microglia and peripheral macrophage are not known. Here,authors nominate and validate transcription factors BHLHE40 and BHLHE41 as regulators of these processes in health and disease.
View Publication
(Oct 2024)
International Journal of Molecular Sciences 25 20
Proliferative Diabetic Retinopathy Microenvironment Drives Microglial Polarization and Promotes Angiogenesis and Fibrosis via Cyclooxygenase-2/Prostaglandin E2 Signaling
Diabetic retinopathy (DR) is the leading cause of visual impairment,particularly in the proliferative form (proliferative DR [PDR]). The impact of the PDR microenvironment on microglia,which are the resident immune cells in the central nervous system,and the specific pathological changes it may induce remain unclear. This study aimed to investigate the role of microglia in the progression of PDR under hypoxic and inflammatory conditions. We performed a comprehensive gene expression analysis using human-induced pluripotent stem cell-derived microglia under different stimuli (dimethyloxalylglycine (DMOG),lipopolysaccharide (LPS),and DMOG + LPS) to mimic the hypoxic inflammatory environment characteristic of PDR. Principal component analysis revealed distinct gene expression profiles,with 76 genes synergistically upregulated under combined stimulation. Notably,prostaglandin-endoperoxide synthase 2 (encoding cyclooxygenase (COX)-2) exhibited the most pronounced increase,leading to elevated prostaglandin E2 (PGE2) levels and driving pathological angiogenesis and inflammation via the COX-2/PGE2/PGE receptor 2 signaling axis. Additionally,the upregulation of the fibrogenic genes snail family transcriptional repressor 1 and collagen type I alpha 1 chain suggested a role for microglia in fibrosis. These findings underscore the critical involvement of microglia in PDR and suggest that targeting both the angiogenic and fibrotic pathways may present new therapeutic strategies for managing this condition.
View Publication
(Oct 2024)
Molecular Metabolism 90 3
Thyroid hormone receptor beta (THR?1) is the major regulator of T3 action in human iPSC-derived hepatocytes
ObjectiveThyroid hormone (TH) action is mediated by thyroid hormone receptor (THR) isoforms. While THR?1 is likely the main isoform expressed in liver,its role in human hepatocytes is not fully understood.MethodsTo elucidate the role of THR?1 action in human hepatocytes we used CRISPR/Cas9 editing to knock out THR?1 in induced pluripotent stem cells (iPSC). Following directed differentiation to the hepatic lineage,iPSC-derived hepatocytes were then interrogated to determine the role of THR?1 in ligand-independent and -dependent functions.ResultsWe found that the loss of THR?1 promoted alterations in proliferation rate and metabolic pathways regulated by T3,including gluconeogenesis,lipid oxidation,fatty acid synthesis,and fatty acid uptake. We observed that key genes involved in liver metabolism are regulated through both T3 ligand-dependent and -independent THR?1 signaling mechanisms. Finally,we demonstrate that following THR?1 knockout,several key metabolic genes remain T3 responsive suggesting they are THR? targets.ConclusionsThese results highlight that iPSC-derived hepatocytes are an effective platform to study mechanisms regulating TH signaling in human hepatocytes. Graphical abstractImage 1 Highlights•THR?1 is essential for T3 effects in human iPSC-derived hepatocytes (iHEPs).•THR?1 knockout reduces iPSC and progenitor cell proliferative capacity.•T3 regulates key genes involved in lipid and carbohydrate metabolism through THR?1.•THR?1 plays a strong ligand-independent role.
View Publication
Acquisition of neurodegenerative features in isogenic OPTN(E50K) human stem cell-derived retinal ganglion cells associated with autophagy disruption and mTORC1 signaling reduction
The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) has led to numerous advances in the field of retinal research,with great potential for the use of hPSC-derived RGCs for studies of human retinal development,in vitro disease modeling,drug discovery,as well as their potential use for cell replacement therapeutics. Of all these possibilities,the use of hPSC-derived RGCs as a human-relevant platform for in vitro disease modeling has received the greatest attention,due to the translational relevance as well as the immediacy with which results may be obtained compared to more complex applications like cell replacement. While several studies to date have focused upon the use of hPSC-derived RGCs with genetic variants associated with glaucoma or other optic neuropathies,many of these have largely described cellular phenotypes with only limited advancement into exploring dysfunctional cellular pathways as a consequence of the disease-associated gene variants. Thus,to further advance this field of research,in the current study we leveraged an isogenic hPSC model with a glaucoma-associated mutation in the Optineurin (OPTN) protein,which plays a prominent role in autophagy. We identified an impairment of autophagic-lysosomal degradation and decreased mTORC1 signaling via activation of the stress sensor AMPK,along with subsequent neurodegeneration in OPTN(E50K) RGCs differentiated from hPSCs,and have further validated some of these findings in a mouse model of ocular hypertension. Pharmacological inhibition of mTORC1 in hPSC-derived RGCs recapitulated disease-related neurodegenerative phenotypes in otherwise healthy RGCs,while the mTOR-independent induction of autophagy reduced protein accumulation and restored neurite outgrowth in diseased OPTN(E50K) RGCs. Taken together,these results highlighted that autophagy disruption resulted in increased autophagic demand which was associated with downregulated signaling through mTORC1,contributing to the degeneration of RGCs.Supplementary InformationThe online version contains supplementary material available at 10.1186/s40478-024-01872-2.
View Publication
(Apr 2024)
medRxiv 400 2
Deep learning modeling of rare noncoding genetic variants in human motor neurons defines
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by the selective and progressive death of motor neurons (MNs). Understanding the genetic and molecular factors influencing ALS survival is crucial for disease management and therapeutics. In this study,we introduce a deep learning-powered genetic analysis framework to link rare noncoding genetic variants to ALS survival. Using data from human induced pluripotent stem cell (iPSC)-derived MNs,this method prioritizes functional noncoding variants using deep learning,links cis-regulatory elements (CREs) to target genes using epigenomics data,and integrates these data through gene-level burden tests to identify survival-modifying variants,CREs,and genes. We apply this approach to analyze 6,715 ALS genomes,and pinpoint four novel rare noncoding variants associated with survival,including chr7:76,009,472:C>T linked to CCDC146. CRISPR-Cas9 editing of this variant increases CCDC146 expression in iPSC-derived MNs and exacerbates ALS-specific phenotypes,including TDP-43 mislocalization. Suppressing CCDC146 with an antisense oligonucleotide (ASO),showing no toxicity,completely rescues ALS-associated survival defects in neurons derived from sporadic ALS patients and from carriers of the ALS-associated G4C2-repeat expansion within C9ORF72. ASO targeting of CCDC146 may be a broadly effective therapeutic approach for ALS. Our framework provides a generic and powerful approach for studying noncoding genetics of complex human diseases.
View Publication