Gentry T and Smith C (AUG 1999)
Experimental hematology 27 8 1244--54
Retroviral vector-mediated gene transfer into umbilical cord blood CD34brCD38-CD33- cells.
In this report,we sought to optimize gene transfer into primitive human umbilical cord blood (UCB) cells. Initially,we found that fresh UCB isolated with the CD34brCD38 CD33 phenotype were highly enriched for hematopoietic progenitors detected in extended long-term cultures (8-week LTCs). In addition,following ex vivo gene transfer,this population possessed virtually all the 8-week LTC activity of the cultured cells. A multiparameter FACS assay was developed to efficiently screen the effects of alternative retroviral vector gene transfer procedures on the transduction efficiency and maintenance of CD34brCD38 CD33 cells. Proliferation of the CD34brCD38 CD33 cells was found to be a prerequisite for efficient transduction. However,in all conditions tested,proliferation of the CD34brCD38 CD33 cells was associated with a progressive loss of primitive cell properties including a reduction in CD34 expression,an increase in CD38/CD33 expression,and a decline in the ability to sustain 8-week LTCs. These observations indicate that it will be necessary to define conditions that more effectively support the self-renewal capacity of CD34brCD38 CD33 cells to optimize retroviral vector gene transfer in these cells. Evaluating these conditions and reagents will be facilitated by the multiparameter FACS assay described in this report.
View Publication
文献
Bü et al. (OCT 1999)
Blood 94 7 2343--56
The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors.
Basophils (Ba) and mast cells (MC) are important effector cells of inflammatory reactions. Both cell types derive from CD34(+) hematopoietic progenitors. However,little is known about the cell subsets that become committed to and give rise to Ba and/or MC. We have generated a monoclonal antibody (MoAb),97A6,that specifically detects human Ba,MC (lung,skin),and their CD34(+) progenitors. Other mature hematopoietic cells (neutrophils,eosinophils,monocytes,lymphocytes,platelets) did not react with MoAb 97A6,and sorting of 97A6(+) peripheral blood (PB) and bone marrow (BM) cells resulted in an almost pure population (textgreater98%) of Ba. Approximately 1% of CD34(+) BM and PB cells was found to be 97A6(+). Culture of sorted CD34(+)97A6(+) BM cells in semisolid medium containing phytohemagglutinin-stimulated leukocyte supernatant for 16 days (multilineage assay) resulted in the formation of pure Ba colonies (10 of 40),Ba-eosinophil colonies (7 of 40),Ba-macrophage colonies (3 of 40),and multilineage Ba-eosinophil-macrophage and/or neutrophil colonies (12 of 40). In contrast,no Ba could be cultured from CD34(+)97A6(-) cells. Liquid culture of CD34(+) PB cells in the presence of 100 ng/mL interleukin (IL)-3 (Ba progenitor assay) resulted in an increase of 97A6(+) cells,starting from 1% of day-0 cells to almost 70% (basophils) after day 7. Culture of sorted BM CD34(+)97A6(+) cells in the presence of 100 ng/mL stem cell factor (SCF) for 35 days (mast cell progenitor assay) resulted in the growth of MC (textgreater30% on day 35). Anti-IgE-induced IgE receptor cross-linking on Ba for 15 minutes resulted in a 4-fold to 5-fold upregulation of 97A6 antigen expression. These data show that the 97A6-reactive antigen plays a role in basophil activation and is expressed on multipotent CD34(+) progenitors,MC progenitors,Ba progenitors,as well as on mature Ba and tissue MC. The lineage-specificity of MoAb 97A6 suggests that this novel marker may be a useful tool to isolate and analyze Ba/MC and their progenitors.
View Publication
文献
Suehiro Y et al. (NOV 1999)
Experimental hematology 27 11 1637--45
Macrophage inflammatory protein 1alpha enhances in a different manner adhesion of hematopoietic progenitor cells from bone marrow, cord blood, and mobilized peripheral blood.
Regulatory mechanisms governing adhesion of hematopoietic progenitor cells to the stromal nische are poorly understood. Growth factors such as stem cell factor (SCF),granulocyte-macrophage colony-stimulating factor,and thrombopoietin were reported to upregulate the adhesion of hematopoietic progenitors to immobilized fibronectin through activation of integrin alpha4beta1 and alpha5beta1. Macrophage inflammatory protein (MIP)-1alpha is a C-C chemokine that suppresses colony formation by stem/progenitor cells in vitro. We asked if MIP-1alpha would modulate the adhesive phenotype of colony-forming cells (CFCs) obtained from healthy donor bone marrow (BM),cord blood (CB),and mobilized peripheral blood (mPB) CD34+ cells,in comparison with SCF,using immobilized fibronectin. SCF significantly increased the level of adhesion of CFCs from BM,CB,and mPB. On the other hand,MIP-1alpha significantly increased the level of adhesion of CFCs from BM and CB,but less so from mPB. The effects of MIP-1alpha were inhibited by blocking antibodies to integrin alpha4,alpha5,or beta1,and polymerization plus rearrangement of F-actin were observed in affected cells by labeling with rhodamine-conjugated phalloidine. These data indicate that the effect of MIP-1alpha on the adhesive phenotype of CFCs is mediated by modulation of the organization of integrin. The amount of MIP-1alpha receptor on mPB was less than for BM or CB,which may explain the distinct characteristics in the adhesive response induced by MIP-1alpha. We suggest that hematopoietic progenitor cells from different sources may be heterogeneous with respect to maturation,integrin affinity,MIP-1alpha receptor expression,and regulation of MIP-1alpha signaling. Our data indicate that MIP-1alpha may affect migration,homing,and mobilization of hematopoietic progenitors by modulating the adhesive phenotype of these cells.
View Publication
文献
Osada H et al. (APR 2001)
Transfusion 41 4 499--503
Detection of fetal HPCs in maternal circulation after delivery.
BACKGROUND: Circulation of mature fetal blood cells in the maternal blood for a certain postpartum period has been verified,but detailed study of the fetal HPCs has not been reported. The objective of this study was to evaluate the frequency and clearance of these cells in the peripheral blood of puerperal women. STUDY DESIGN AND METHODS: PBMNCs from 15 puerperal women who gave birth to male infants were cultured in semi-solid medium containing hematopoietic stimulating factors. Colonies formed in the medium were individually characterized,collected,and subjected to PCR amplification of the SRY gene on Y chromosome to confirm fetal origin. RESULTS: The mean numbers of fetal progenitor cell colonies isolated per mL of maternal blood were 1.63,2.48,0.56,0.12,and 0 on the day of delivery,at 4 days,1 month,6 months,and 1 year after delivery,respectively. There was no difference in the ratio of fetal versus maternal colonies between erythroid and granulocyte/macrophage lineages. CONCLUSION: The present study demonstrated that a significant number of fetal HPCs circulate in the maternal blood for a duration of at least 6 months after delivery.
View Publication
文献
Jasinski M et al. (OCT 2001)
Blood 98 7 2248--55
GATA1-Cre mediates Piga gene inactivation in the erythroid/megakaryocytic lineage and leads to circulating red cells with a partial deficiency in glycosyl phosphatidylinositol-linked proteins (paroxysmal nocturnal hemoglobinuria type II cells).
Patients with paroxysmal nocturnal hemoglobinuria (PNH) have blood cells deficient in glycosyl phosphatidylinositol (GPI)-linked proteins owing to a somatic mutation in the X-linked PIGA gene. To target Piga recombination to the erythroid/megakaryocytic lineage in mice,the Cre/loxP system was used,and Cre was expressed under the transcriptional regulatory sequences of GATA-1. Breeding of GATA1-cre (G) transgenic mice with mice carrying a floxed Piga (L) allele was associated with high embryonic lethality. However,double-transgenic (GL) mice that escaped early recombination looked healthy and were observed for 16 months. Flow cytometric analysis of peripheral blood cells showed that GL mice had up to 100% of red cells deficient in GPI-linked proteins. The loss of GPI-linked proteins on the cell surface occurred late in erythroid differentiation,causing a proportion of red cells to express low residual levels of GPI-linked proteins. Red cells with residual expression of GPI-linked proteins showed an intermediate sensitivity toward complement and thus resemble PNH type II cells in patients with PNH. Recombination of the floxed Piga allele was also detected in cultured megakaryocytes,mast cells,and eosinophils,but not in neutrophils,lymphocytes,or nonhematopoietic tissues. In summary,GATA1-Cre causes high-efficiency Piga gene inactivation in a GATA-1-specific pattern. For the first time,mice were generated that have almost 100% of red cells deficient in GPI-linked proteins. These animals will be valuable to further investigate the consequences of GPI-anchor deficiency on erythroid/megakaryocytic cells.
View Publication
文献
Moreau-Gaudry F et al. (NOV 2001)
Blood 98 9 2664--72
High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors.
Use of oncoretroviral vectors in gene therapy for hemoglobinopathies has been impeded by low titer vectors,genetic instability,and poor expression. Fifteen self- inactivating (SIN) lentiviral vectors using 4 erythroid promoters in combination with 4 erythroid enhancers with or without the woodchuck hepatitis virus postregulatory element (WPRE) were generated using the enhanced green fluorescent protein as a reporter gene. Vectors with high erythroid-specific expression in cell lines were tested in primary human CD34(+) cells and in vivo in the murine bone marrow (BM) transplantation model. Vectors containing the ankyrin-1 promoter showed high-level expression and stable proviral transmission. Two vectors containing the ankyrin-1 promoter and 2 erythroid enhancers (HS-40 plus GATA-1 or HS-40 plus 5-aminolevulinate synthase intron 8 [I8] enhancers) and WPRE expressed at levels higher than the HS2/beta-promoter vector in bulk unilineage erythroid cultures and individual erythroid blast-forming units derived from human BM CD34(+) cells. Sca1(+)/lineage(-) Ly5.1 mouse hematopoietic cells,transduced with these 2 ankyrin-1 promoter vectors,were injected into lethally irradiated Ly5.2 recipients. Eleven weeks after transplantation,high-level expression was seen from both vectors in blood (63%-89% of red blood cells) and erythroid cells in BM (70%-86% engraftment),compared with negligible expression in myeloid and lymphoid lineages in blood,BM,spleen,and thymus (0%-4%). The I8/HS-40-containing vector encoding a hybrid human beta/gamma-globin gene led to 43% to 113% human gamma-globin expression/copy of the mouse alpha-globin gene. Thus,modular use of erythroid-specific enhancers/promoters and WPRE in SIN-lentiviral vectors led to identification of high-titer,stably transmitted vectors with high-level erythroid-specific expression for gene therapy of red cell diseases.
View Publication
文献
Iversen PO et al. (JAN 2002)
American journal of physiology. Regulatory,integrative and comparative physiology 282 1 R166--72
Decreased hematopoiesis in bone marrow of mice with congestive heart failure.
Patients with heart failure are predisposed to infections and anemia,possibly due to reduced hematopoiesis. The proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is increased in heart failure,and it inhibits normal hematopoiesis,partly due to apoptosis through the effector molecule Fas. We examined bone marrow progenitor cells of mice with heart failure induced by acute myocardial infarction. The fraction of progenitor cells in mice with heart failure was only approximately 40% of control. Measured with in vitro clonal assays,the proliferative capacity of the progenitor cells in mice with heart failure was reduced to approximately 50% of control. Flow cytometry with specific markers revealed a threefold increase in apoptosis among progenitor cells from mice with heart failure. In these mice,TNF-alpha/Fas expression was increased in bone marrow natural killer (NK) and T cells,and these lymphocytes showed increased cytolytic activity in vitro against progenitor cells. We conclude that the TNF-alpha/Fas pathway in lymphocytes is activated in the bone marrow during heart failure,which may play a pathogenic role in the observed decrease in hematopoiesis.
View Publication
文献
Samper E et al. (APR 2002)
Blood 99 8 2767--75
Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells.
Telomere length must be tightly regulated in highly proliferative tissues,such as the lymphohematopoietic system. Under steady-state conditions,the levels and functionality of hematopoietic-committed or multipotent progenitors were not affected in late-generation telomerase-deficient mice (mTerc(-/-)) with critically short telomeres. Evaluation of self-renewal potential of mTerc(-/-) day-12 spleen colony-forming units demonstrated no alteration as compared with wildtype progenitors. However,the replating ability of mTerc(-/-) granulocyte-macrophage CFUs (CFU-GMs) was greatly reduced as compared with wildtype CFU-GMs,indicating a diminished capacity of late-generation mTerc(-/-) committed progenitors when forced to proliferate. Long-term bone marrow cultures of mTerc(-/-) bone marrow (BM) cells show a reduction in proliferative capacity; this defect can be mainly attributed to the hematopoietic,not to the stromal,mTerc(-/-) cells. In serial and competitive transplantations,mTerc(-/-) BM stem cells show reduced long-term repopulating capacity,concomitant with an increase in genetic instability compared with wildtype cells. Nevertheless,in competitive transplantations late-generation mTerc(-/-) precursors can occasionally overcome this proliferative impairment and reconstitute irradiated recipients. In summary,our results demonstrate that late-generation mTerc(-/-) BM cells with short telomeres,although exhibiting reduced proliferation ability and reduced long-term repopulating capacity,can still reconstitute myeloablated animals maintaining stem cell function.
View Publication
文献
Truong B-TH et al. (FEB 2003)
Blood 101 3 1141--8
CCAAT/Enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia.
CCAAT/enhancer binding proteins (C/EBPs) are a family of factors that regulate cell growth and differentiation. These factors,particularly C/EBPalpha and C/EBPepsilon,have important roles in normal myelopoiesis. In addition,loss of C/EBP activity appears to have a role in the pathogenesis of myeloid disorders including acute myeloid leukemia (AML). Acute promyelocytic leukemia (APL) is a subtype of AML in which a role for C/EBPs has been postulated. In almost all cases of APL,a promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) fusion protein is expressed as a result of a t(15;17)(q22;q12) chromosomal translocation. PML-RARalpha inhibits expression of C/EBPepsilon,whereas all-trans retinoic acid (tRA),a differentiating agent to which APL is particularly susceptible,induces C/EBPepsilon expression. PML-RARalpha may also inhibit C/EBPalpha activity. Thus,the effects of PML-RARalpha on C/EBPs may contribute to both the development of leukemia and the unique sensitivity of APL to tRA. We tested the hypothesis that increasing the activity of C/EBPs would revert the leukemic phenotype. C/EBPalpha and C/EBPepsilon were introduced into the FDC-P1 myeloid cell line and into leukemic cells from PML-RARA transgenic mice. C/EBP factors suppressed growth and induced partial differentiation in vitro. In vivo,enhanced expression of C/EBPs prolonged survival. By using a tamoxifen-responsive version of C/EBPepsilon,we observed that C/EBPepsilon could mimic the effect of tRA,driving neutrophilic differentiation in leukemic animals. Our results support the hypothesis that induction of C/EBP activity is a critical effect of tRA in APL. Furthermore,our findings suggest that targeted modulation of C/EBP activities could provide a new approach to therapy of AML.
View Publication
文献
Rebel VI et al. (NOV 2002)
Proceedings of the National Academy of Sciences of the United States of America 99 23 14789--94
Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal.
Hematopoietic stem cells (HSC) are tightly regulated through,as yet,undefined mechanisms that balance self-renewal and differentiation. We have identified a role for the transcriptional coactivators CREB-binding protein (CBP) and p300 in such HSC fate decisions. A full dose of CBP,but not p300,is crucial for HSC self-renewal. Conversely,p300,but not CBP,is essential for proper hematopoietic differentiation. Furthermore,in chimeric mice,hematologic malignancies emerged from both CBP(-/-) and p300(-/-) cell populations. Thus,CBP and p300 play essential but distinct roles in maintaining normal hematopoiesis,and,in mice,both are required for preventing hematologic tumorigenesis.
View Publication
文献
Glodek AM et al. (FEB 2003)
The Journal of experimental medicine 197 4 461--73
Sustained activation of cell adhesion is a differentially regulated process in B lymphopoiesis.
It is largely unknown how hematopoietic progenitors are positioned within specialized niches of the bone marrow microenvironment during development. Chemokines such as CXCL12,previously called stromal cell-derived factor 1,are known to activate cell integrins of circulating leukocytes resulting in transient adhesion before extravasation into tissues. However,this short-term effect does not explain the mechanism by which progenitor cells are retained for prolonged periods in the bone marrow. Here we show that in human bone marrow CXCL12 triggers a sustained adhesion response specifically in progenitor (pro- and pre-) B cells. This sustained adhesion diminishes during B cell maturation in the bone marrow and,strikingly,is absent in circulating mature B cells,which exhibit only transient CXCL12-induced adhesion. The duration of adhesion is tightly correlated with CXCL12-induced activation of focal adhesion kinase (FAK),a known molecule involved in integrin-mediated signaling. Sustained adhesion of progenitor B cells is associated with prolonged FAK activation,whereas transient adhesion in circulating B cells is associated with short-lived FAK activation. Moreover,sustained and transient adhesion responses are differentially affected by pharmacological inhibitors of protein kinase C and phosphatidylinositol 3-kinase. These results provide a developmental cell stage-specific mechanism by which chemokines orchestrate hematopoiesis through sustained rather than transient activation of adhesion and cell survival pathways.
View Publication
文献
Lacout C et al. (AUG 2003)
Blood 102 4 1282--9
A defect in hematopoietic stem cell migration explains the nonrandom X-chromosome inactivation in carriers of Wiskott-Aldrich syndrome.
A defect in cell trafficking and chemotaxis plays an important role in the immune deficiency observed in Wiskott-Aldrich syndrome (WAS). In this report,we show that marrow cells from WAS protein (WASP)-deficient mice also have a defect in chemotaxis. Serial transplantation and competitive reconstitution experiments demonstrated that marrow cells,including hematopoietic progenitors and stem cells (HSCs),have decreased homing capacities that were associated with a defect in adhesion to collagen. During development,HSCs migrate from the liver to the marrow and the spleen,prompting us to ask if a defect in HSC homing during development may explain the skewed X-chromosome inactivation in WAS carriers. Preliminary evidence has shown that,in contrast to marrow progenitor cells,fetal liver progenitor cells from heterozygous females had a random X-chromosome inactivation. When fetal liver cells from WASP-carrier females were injected into irradiated recipients,a nonrandom inactivation of the X-chromosome was found at the level of hematopoietic progenitors and HSCs responsible for the short- and long-term hematopoietic reconstitution. Therefore,the mechanism of the skewed X-chromosomal inactivation observed in WAS carriers may be related to a migration defect of WASP-deficient HSCs.
View Publication