Cao N et al. (SEP 2013)
Cell Research 23 9 1119--1132
Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions
Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs),including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs),hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases,but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4),glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs,including hESCs and hiPSCs,into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10(7)-fold when the differentiation-inducing signals from BMP,GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore,these CVPCs exhibited expected genome-wide molecular features of CVPCs,retained potentials to generate major cardiovascular lineages including cardiomyocytes,smooth muscle cells and endothelial cells in vitro,and were non-tumorigenic in vivo. Altogether,the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs,which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine.
View Publication
文献
Legartová et al. (AUG 2013)
Epigenomics 5 4 379--396
Basic nuclear processes affected by histone acetyltransferases and histone deacetylase inhibitors
AIM The optimal balance between histone acetylation and deacetylation is important for proper gene function. Therefore,we addressed how inhibitors of histone-modifying enzymes can modulate nuclear events,including replication,transcription,splicing and DNA repair. MATERIALS & METHODS Changes in cell signaling pathways upon treatment with histone acetyltransferases and/or histone deacetylase inhibitors were studied by cDNA microarrays and western blots. RESULTS We analyzed the effects of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and the histone acetylase inhibitor MG149. SAHA altered the expression of factors involved in DNA replication complexes,basal transcription and the spliceosome pathway. DNA repair-related genes,including Rad51,Rad54 and BRCA2,were significantly downregulated by SAHA. However,MG149 had no effect on the investigated nuclear processes,with the exception of the spliceosome network and Sestrins,involved in DNA repair. CONCLUSION Based on our results,we propose that the studied epigenetic drugs have the distinct potential to affect specific cell signaling pathways depending on their respective molecular targets.
View Publication
文献
Malik J et al. (NOV 2013)
Haematologica 98 11 1778--1787
Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts
Primitive erythroid cells,the first red blood cells produced in the mammalian embryo,are necessary for embryonic survival. Erythropoietin and its receptor EpoR,are absolutely required for survival of late-stage definitive erythroid progenitors in the fetal liver and adult bone marrow. Epo- and Epor-null mice die at E13.5 with a lack of definitive erythrocytes. However,the persistence of circulating primitive erythroblasts raises questions about the role of erythropoietin/EpoR in primitive erythropoiesis. Using Epor-null mice and a novel primitive erythroid 2-step culture we found that erythropoietin is not necessary for specification of primitive erythroid progenitors. However,Epor-null embryos develop a progressive,profound anemia by E12.5 as primitive erythroblasts mature as a synchronous cohort. This anemia results from reduced primitive erythroblast proliferation associated with increased p27 expression,from advanced cellular maturation,and from markedly elevated rates of apoptosis associated with an imbalance in pro- and anti-apoptotic gene expression. Both mouse and human primitive erythroblasts cultured without erythropoietin also undergo accelerated maturation and apoptosis at later stages of maturation. We conclude that erythropoietin plays an evolutionarily conserved role in promoting the proliferation,survival,and appropriate timing of terminal maturation of primitive erythroid precursors.
View Publication
文献
Deng Y et al. (NOV 2013)
Acta Biomaterialia 9 11 8840--8850
Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions
Realization of the full potential of human induced pluripotent stem cells (hiPSC) in clinical applications requires the development of well-defined culture conditions for their long-term growth and directed differentiation. This paper describes a novel fully defined synthetic peptide-decorated substrate that supports self-renewal of hiPSC in commercially available xeno-free,chemically defined medium. The Au surface was deposited by a poly(OEGMA-co-HEMA) film,using the surface-initiated polymerization method (SIP) with the further step of carboxylation. The hiPSC generated from umbilical cord mesenchymal cells were successfully cultured for 10 passages on the peptide-tethered poly(OEGMA-co-HEMA) brushes for the first time. Cells maintained their characteristic morphology,proliferation and expressed high levels of markers of pluripotency,similar to the cells cultured on Matrigel???. Moreover,the cell adhesion could be tuned by the pattern and peptide concentration on the substrate. This well-defined,xeno-free and safe substrate,which supports long-term proliferation and self-renewal of hiPSC,will not only help to accelerate the translational perspectives of hiPSC,but also provide a platform to elucidate the underlying molecular mechanisms that regulate stem cell proliferation and differentiation via SIP technology. ?? 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
View Publication
文献
Burkhardt MF et al. (SEP 2013)
Molecular and Cellular Neuroscience 56 355--364
A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells
Development of therapeutics for genetically complex neurodegenerative diseases such as sporadic amyotrophic lateral sclerosis (ALS) has largely been hampered by lack of relevant disease models. Reprogramming of sporadic ALS patients' fibroblasts into induced pluripotent stem cells (iPSC) and differentiation into affected neurons that show a disease phenotype could provide a cellular model for disease mechanism studies and drug discovery. Here we report the reprogramming to pluripotency of fibroblasts from a large cohort of healthy controls and ALS patients and their differentiation into motor neurons. We demonstrate that motor neurons derived from three sALS patients show de novo TDP-43 aggregation and that the aggregates recapitulate pathology in postmortem tissue from one of the same patients from which the iPSC were derived. We configured a high-content chemical screen using the TDP-43 aggregate endpoint both in lower motor neurons and upper motor neuron like cells and identified FDA-approved small molecule modulators including Digoxin demonstrating the feasibility of patient-derived iPSC-based disease modeling for drug screening.
View Publication
文献
Awe JP et al. (JUL 2013)
Stem cell research & therapy 4 4 87
Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status
INTRODUCTION: The reprogramming of a patient's somatic cells back into induced pluripotent stem cells (iPSCs) holds significant promise for future autologous cellular therapeutics. The continued presence of potentially oncogenic transgenic elements following reprogramming,however,represents a safety concern that should be addressed prior to clinical applications. The polycistronic stem cell cassette (STEMCCA),an excisable lentiviral reprogramming vector,provides,in our hands,the most consistent reprogramming approach that addresses this safety concern. Nevertheless,most viral integrations occur in genes,and exactly how the integration,epigenetic reprogramming,and excision of the STEMCCA reprogramming vector influences those genes and whether these cells still have clinical potential are not yet known. METHODS: In this study,we used both microarray and sensitive real-time PCR to investigate gene expression changes following both intron-based reprogramming and excision of the STEMCCA cassette during the generation of human iPSCs from adult human dermal fibroblasts. Integration site analysis was conducted using nonrestrictive linear amplification PCR. Transgene-free iPSCs were fully characterized via immunocytochemistry,karyotyping and teratoma formation,and current protocols were implemented for guided differentiation. We also utilized current good manufacturing practice guidelines and manufacturing facilities for conversion of our iPSCs into putative clinical grade conditions. RESULTS: We found that a STEMCCA-derived iPSC line that contains a single integration,found to be located in an intronic location in an actively transcribed gene,PRPF39,displays significantly increased expression when compared with post-excised stem cells. STEMCCA excision via Cre recombinase returned basal expression levels of PRPF39. These cells were also shown to have proper splicing patterns and PRPF39 gene sequences. We also fully characterized the post-excision iPSCs,differentiated them into multiple clinically relevant cell types (including oligodendrocytes,hepatocytes,and cardiomyocytes),and converted them to putative clinical-grade conditions using the same approach previously approved by the US Food and Drug Administration for the conversion of human embryonic stem cells from research-grade to clinical-grade status. CONCLUSION: For the first time,these studies provide a proof-of-principle for the generation of fully characterized transgene-free human iPSCs and,in light of the limited availability of current good manufacturing practice cellular manufacturing facilities,highlight an attractive potential mechanism for converting research-grade cell lines into putatively clinical-grade biologics for personalized cellular therapeutics.
View Publication
文献
Jiang P et al. (JUL 2013)
Nature communications 4 2196
hESC-derived Olig2+ progenitors generate a subtype of astroglia with protective effects against ischaemic brain injury.
Human pluripotent stem cells (hPSCs) have been differentiated to astroglia,but the utilization of hPSC-derived astroglia as cell therapy for neurological diseases has not been well studied. Astroglia are heterogeneous,and not all astroglia are equivalent in promoting neural repair. A prerequisite for cell therapy is to derive defined cell populations with superior therapeutic effects. Here we use an Olig2-GFP human embryonic stem cell (hESC) reporter to demonstrate that hESC-derived Olig2(+) progenitors generate a subtype of previously uncharacterized astroglia (Olig2PC-Astros). These Olig2PC-Astros differ substantially from astroglia differentiated from Olig2-negative hESC-derived neural progenitor cells (NPC-Astros),particularly in their neuroprotective properties. When grafted into brains subjected to global ischaemia,Olig2PC-Astros exhibit superior neuroprotective effects and improved behavioural outcome compared to NPC-Astros. Thus,this new paradigm of human astroglial differentiation is useful for studying the heterogeneity of human astroglia,and the unique Olig2PC-Astros may constitute a new cell therapy for treating cerebral ischaemia and other neurological diseases.
View Publication
文献
Felfly H and Klein OD (JUL 2013)
Scientific Reports 3 2277
Sprouty genes regulate proliferation and survival of human embryonic stem cells.
Sprouty (Spry) genes encode negative regulators of receptor tyrosine kinase (RTK) signaling,which plays important roles in human embryonic stem cells (hESCs). SPRY2 and SPRY4 are the two most highly expressed Sprouty family members in hESCs,suggesting that they may influence self-renewal. To test this hypothesis,we performed siRNA-mediated knock down (KD) studies. SPRY2 KD resulted in increased cell death and decreased proliferation,whereas SPRY4 KD enhanced survival. In both cases,after KD the cells were able to differentiate into cells of the three germ layers,although after SPRY2 KD there was a tendency toward increased ectodermal differentiation. SPRY2 KD cells displayed impaired mitochondrial fusion and cell membrane damage,explaining in part the increased cell death. These data indicate that Sprouty genes regulate pathways involved in proliferation and cell death in hESCs.
View Publication
文献
Krueger WH et al. (JUL 2013)
PLoS ONE 8 7 e67296
Cholesterol-Secreting and Statin-Responsive Hepatocytes from Human ES and iPS Cells to Model Hepatic Involvement in Cardiovascular Health
Hepatocytes play a central and crucial role in cholesterol and lipid homeostasis,and their proper function is of key importance for cardiovascular health. In particular,hepatocytes (especially periportal hepatocytes) endogenously synthesize large amounts of cholesterol and secrete it into circulating blood via apolipoprotein particles. Cholesterol-secreting hepatocytes are also the clinically-relevant cells targeted by statin treatment in vivo. The study of cholesterol homeostasis is largely restricted to the use of animal models and immortalized cell lines that do not recapitulate those key aspects of normal human hepatocyte function that result from genetic variation of individuals within a population. Hepatocyte-like cells (HLCs) derived from human embryonic and induced pluripotent stem cells can provide a cell culture model for the study of cholesterol homeostasis,dyslipidemias,the action of statins and other pharmaceuticals important for cardiovascular health. We have analyzed expression of core components for cholesterol homeostasis in untreated human iPS cells and in response to pravastatin. Here we show the production of differentiated cells resembling periportal hepatocytes from human pluripotent stem cells. These cells express a broad range of apolipoproteins required for secretion and elimination of serum cholesterol,actively secrete cholesterol into the medium,and respond functionally to statin treatment by reduced cholesterol secretion. Our research shows that HLCs derived from human pluripotent cells provide a robust cell culture system for the investigation of the hepatic contribution to human cholesterol homeostasis at both cellular and molecular levels. Importantly,it permits for the first time to also functionally assess the impact of genetic polymorphisms on cholesterol homeostasis. Finally,the system will also be useful for mechanistic studies of heritable dyslipidemias,drug discovery,and investigation of modes of action of cholesterol-modulatory drugs.
View Publication
DNA targeting specificity of RNA-guided Cas9 nucleases.
The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here,we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates textgreater700 guide RNA variants and SpCas9-induced indel mutation levels at textgreater100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner,sensitive to the number,position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications,we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.
View Publication
文献
Bharadwaj R et al. (JUL 2013)
The Journal of neuroscience : the official journal of the Society for Neuroscience 33 29 11839--11851
Conserved Chromosome 2q31 Conformations Are Associated with Transcriptional Regulation of GAD1 GABA Synthesis Enzyme and Altered in Prefrontal Cortex of Subjects with Schizophrenia.
Little is known about chromosomal loopings involving proximal promoter and distal enhancer elements regulating GABAergic gene expression,including changes in schizophrenia and other psychiatric conditions linked to altered inhibition. Here,we map in human chromosome 2q31 the 3D configuration of 200 kb of linear sequence encompassing the GAD1 GABA synthesis enzyme gene locus,and we describe a loop formation involving the GAD1 transcription start site and intergenic noncoding DNA elements facilitating reporter gene expression. The GAD1-TSS(-50kbLoop) was enriched with nucleosomes epigenetically decorated with the transcriptional mark,histone H3 trimethylated at lysine 4,and was weak or absent in skin fibroblasts and pluripotent stem cells compared with neuronal cultures differentiated from them. In the prefrontal cortex of subjects with schizophrenia,GAD1-TSS(-50kbLoop) was decreased compared with controls,in conjunction with downregulated GAD1 expression. We generated transgenic mice expressing Gad2 promoter-driven green fluorescent protein-conjugated histone H2B and confirmed that Gad1-TSS(-55kbLoop),the murine homolog to GAD1-TSS(-50kbLoop),is a chromosomal conformation specific for GABAergic neurons. In primary neuronal culture,Gad1-TSS(-55kbLoop) and Gad1 expression became upregulated when neuronal activity was increased. We conclude that 3D genome architectures,including chromosomal loopings for promoter-enhancer interactions involved in the regulation of GABAergic gene expression,are conserved between the rodent and primate brain,and subject to developmental and activity-dependent regulation,and disordered in some cases with schizophrenia. More broadly,the findings presented here draw a connection between noncoding DNA,spatial genome architecture,and neuronal plasticity in development and disease.
View Publication
文献
Jiang J et al. (AUG 2013)
Nature 500 7462 296--300
Translating dosage compensation to trisomy 21.
Down's syndrome is a common disorder with enormous medical and social costs,caused by trisomy for chromosome 21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected by manipulating a single gene,XIST (the X-inactivation gene). Using genome editing with zinc finger nucleases,we inserted a large,inducible XIST transgene into the DYRK1A locus on chromosome 21,in Down's syndrome pluripotent stem cells. The XIST non-coding RNA coats chromosome 21 and triggers stable heterochromatin modifications,chromosome-wide transcriptional silencing and DNA methylation to form a ‘chromosome 21 Barr body'. This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21,free from genetic and epigenetic noise. Notably,deficits in proliferation and neural rosette formation are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro also surmounts the major first step towards potential development of ‘chromosome therapy'.
View Publication