Johansson BM and Wiles MV (JAN 1995)
Molecular and cellular biology 15 1 141--51
Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development.
Xenopus in vitro studies have implicated both transforming growth factor beta (TGF-beta) and fibroblast growth factor (FGF) families in mesoderm induction. Although members of both families are present during mouse mesoderm formation,there is little evidence for their functional role in mesoderm induction. We show that mouse embryonic stem cells,which resemble primitive ectoderm,can differentiate to mesoderm in vitro in a chemically defined medium (CDM) in the absence of fetal bovine serum. In CDM,this differentiation is responsive to TGF-beta family members in a concentration-dependent manner,with activin A mediating the formation of dorsoanterior-like mesoderm and bone morphogenetic protein 4 mediating the formation of ventral mesoderm,including hematopoietic precursors. These effects are not observed in CDM alone or when TGF-beta 1,-beta 2,or -beta 3,acid FGF,or basic FGF is added individually to CDM. In vivo,at day 6.5 of mouse development,activin beta A RNA is detectable in the decidua and bone morphogenetic protein 4 RNA is detectable in the egg cylinder. Together,our data strongly implicate the TGF-beta family in mammalian mesoderm development and hematopoietic cell formation.
View Publication
文献
Nakano T et al. (AUG 1994)
Science (New York,N.Y.) 265 5175 1098--101
Generation of lymphohematopoietic cells from embryonic stem cells in culture.
An efficient system was developed that induced the differentiation of embryonic stem (ES) cells into blood cells of erythroid,myeloid,and B cell lineages by coculture with the stromal cell line OP9. This cell line does not express functional macrophage colony-stimulating factor (M-CSF). The presence of M-CSF had inhibitory effects on the differentiation of ES cells to blood cells other than macrophages. Embryoid body formation or addition of exogenous growth factors was not required,and differentiation was highly reproducible even after the selection of ES cells with the antibiotic G418. Combined with the ability to genetically manipulate ES cells,this system will facilitate the study of molecular mechanisms involved in development and differentiation of hematopoietic cells.
View Publication
文献
Maltsev VA et al. (NOV 1993)
Mechanisms of development 44 1 41--50
Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types.
Pluripotent embryonic stem cells (ESC,ES cells) of line D3 were differentiated in vitro and via embryo-like aggregates (embryoid bodies) of defined cell number into spontaneously beating cardiomyocytes. By using RT-PCR technique,alpha- and beta-cardiac myosin heavy chain (MHC) genes were found to be expressed in embryoid bodies of early to terminal differentiation stages. The exclusive expression of the beta-cardiac MHC gene detected in very early differentiated embryoid bodies proved to be dependent on the number of ES cells developing in the embryoid body. Cardiomyocytes enzymatically isolated from embryoid body outgrowths at different stages of development were further characterized by immunocytological and electrophysiological techniques. All cardiomyocytes appeared to be positive in immunofluorescence assays with monoclonal antibodies against cardiac-specific alpha-cardiac MHC,as well as muscle-specific sarcomeric myosin heavy chain and desmin. The patch-clamp technique allowed a more detailed characterization of the in vitro differentiated cardiomyocytes which were found to represent phenotypes corresponding to sinusnode,atrium or ventricle of the heart. The cardiac cells of early differentiated stage expressed pacemaker-like action potentials similar to those described for embryonic cardiomyocytes. The action potentials of terminally differentiated cells revealed shapes,pharmacological characteristics and hormonal regulation inherent to adult sinusnodal,atrial or ventricular cells. In cardiomyocytes of intermediate differentiation state,action potentials of very long duration (0.3-1 s) were found,which may represent developmentally controlled transitions between different types of action potentials. Therefore,the presented ES cell differentiation system permits the investigation of commitment and differentiation of embryonic cells into the cardiomyogenic lineage in vitro.
View Publication
文献
Bagutti C et al. (OCT 1996)
Developmental biology 179 1 184--96
Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and beta 1 integrin-deficient cells.
beta 1 Integrins are known to regulate terminal differentiation and morphogenesis in the adult epidermis. We have investigated their role in the embryonic development of keratinocytes by comparing the differentiation of wild-type and beta 1-null mouse embryonal stem (ES) cells. By 12-15 days in culture,differentiation of embryonic or simple epithelial cells occurred in both ES cell populations,as detected by expression of keratins 8,18,and 19. From 21 days,expression of keratins 10 and 14 and of the cornified envelope precursor involucrin indicated that some of the wild-type cells had differentiated into keratinocytes. In contrast,keratinocyte markers were not expressed in beta 1-null cultures. The beta 1-null cells failed to express the alpha 2 and alpha 3 integrin subunits on the cell surface,consistent with the association of these a subunits with beta 1. Furthermore,alpha 6 and beta 4 expression was reduced in the beta 1-null cultures. Although beta 1-null ES cells failed to undergo differentiation into keratinocytes in vitro,they did form keratinocyte cysts expressing alpha 6 beta 4,keratins 1 and 14,and involucrin when allowed to form teratomas by subcutaneous injection in mice; furthermore,beta 1-null keratinocytes were found in the epidermis of a wild-type/beta 1-null chimeric mouse. As judged by immunofluorescence microscopy,extracellular matrix assembly was severely impaired in beta 1-null ES cell cultures,but not in the teratomas or chimeric mouse skin. We therefore speculate that the failure of beta 1-null cells to differentiate into keratinocytes in vitro may reflect an inability to assemble a basement membrane.
View Publication
文献
Okabe S et al. (SEP 1996)
Mechanisms of development 59 1 89--102
Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro.
To understand the mechanism of the sequential restriction of multipotency of stem cells during development,we have established culture conditions that allow the differentiation of neuroepithelial precursor cells from embryonic stem (ES) cells. A highly enriched population of neuroepithelial precursor cells derived from ES cells proliferates in the presence of basic fibroblast growth factor (bFGF). These cells differentiate into both neurons and glia following withdrawal of bFGF. By further differentiating the cells in serum-containing medium,the neurons express a wide variety of neuron-specific genes and generate both excitatory and inhibitory synaptic connections. The expression pattern of position-specific neural markers suggests the presence of a variety of central nervous system (CNS) neuronal cell types. These findings indicate that neuronal precursor cells can be isolated from ES cells and that these cells can efficiently differentiate into functional post-mitotic neurons of diverse CNS structures.
View Publication
文献
Vittet D et al. (NOV 1996)
Blood 88 9 3424--31
Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps.
The mechanisms involved in the regulation of vasculogenesis still remain unclear in mammals. Totipotent embryonic stem (ES) cells may represent a suitable in vitro model to study molecular events involved in vascular development. In this study,we followed the expression kinetics of a relatively large set of endothelial-specific markers in ES-derived embryoid bodies (EBs). Results of both reverse transcription-polymerase chain reaction and/or immunofluorescence analysis show that a spontaneous endothelial differentiation occurs during EBs development. ES-derived endothelial cells express a full range of cell lineage-specific markers: platelet endothelial cell adhesion molecule (PECAM),Flk-1,tie-1,tie-2,vascular endothelial (VE) cadherin,MECA-32,and MEC-14.7. Analysis of the kinetics of endothelial marker expression allows the distinction of successive maturation steps. Flk-1 was the first to be detected; its mRNA is apparent from day 3 of differentiation. PECAM and tie-2 mRNAs were found to be expressed only from day 4,whereas VE-cadherin and tie-1 mRNAs cannot be detected before day 5. Immunofluorescence stainings of EBs with antibodies directed against Flk-1,PECAM,VE-cadherin,MECA-32,and MEC-14.7 confirmed that the expression of these antigens occurs at different steps of endothelial cell differentiation. The addition of an angiogenic growth factor mixture including erythropoietin,interleukin-6,fibroblast growth factor 2,and vascular endothelial growth factor in the EB culture medium significantly increased the development of primitive vascular-like structures within EBs. These results indicate that this in vitro system contains a large part of the endothelial cell differentiation program and constitutes a suitable model to study the molecular mechanisms involved in vasculogenesis.
View Publication
文献
Nakayama N et al. (APR 1998)
Blood 91 7 2283--95
Natural killer and B-lymphoid potential in CD34+ cells derived from embryonic stem cells differentiated in the presence of vascular endothelial growth factor.
Differentiation of totipotent mouse embryonic stem (ES) cells to various lymphohematopoietic cells is an in vitro model of the hematopoietic cell development during embryogenesis. To understand this process at cellular levels,differentiation intermediates were investigated. ES cells generated progeny expressing CD34,which was significantly enhanced by vascular endothelial growth factor (VEGF). The isolated CD34+ cells were enriched for myeloid colony-forming cells but not significantly for erythroid colony-forming cells. When cultured on OP9 stroma cells in the presence of interleukin-2 and interleukin-7,the CD34+ cells developed two types of B220+ CD34- lymphocytes: CD3- cytotoxic lymphocytes and CD19+ pre-B cells,and such lymphoid potential was highly enriched in the CD34+ population. Interestingly,the cytotoxic cells expressed the natural killer (NK) cell markers,such as NKR-P1,perforin,and granzymes,classified into two types,one of which showed target specificity of NK cells. Thus,ES cells have potential to generate NK-type cytotoxic lymphocytes in vitro in addition to erythro-myeloid cells and pre-B cells,and both myeloid and lymphoid cells seem to be derived from the CD34+ intermediate,on which VEGF may play an important role.
View Publication
文献
Thomson JA et al. (NOV 1998)
Science (New York,N.Y.) 282 5391 1145--7
Embryonic stem cell lines derived from human blastocysts.
Human blastocyst-derived,pluripotent cell lines are described that have normal karyotypes,express high levels of telomerase activity,and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages. After undifferentiated proliferation in vitro for 4 to 5 months,these cells still maintained the developmental potential to form trophoblast and derivatives of all three embryonic germ layers,including gut epithelium (endoderm); cartilage,bone,smooth muscle,and striated muscle (mesoderm); and neural epithelium,embryonic ganglia,and stratified squamous epithelium (ectoderm). These cell lines should be useful in human developmental biology,drug discovery,and transplantation medicine.
View Publication
文献
Liu X et al. (NOV 2017)
Nature methods 14 11 1055--1062
Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming.
Recent reports on the characteristics of naive human pluripotent stem cells (hPSCs) obtained using independent methods differ. Naive hPSCs have been mainly derived by conversion from primed hPSCs or by direct derivation from human embryos rather than by somatic cell reprogramming. To provide an unbiased molecular and functional reference,we derived genetically matched naive hPSCs by direct reprogramming of fibroblasts and by primed-to-naive conversion using different naive conditions (NHSM,RSeT,5iLAF and t2iLGöY). Our results show that hPSCs obtained in these different conditions display a spectrum of naive characteristics. Furthermore,our characterization identifies KLF4 as sufficient for conversion of primed hPSCs into naive t2iLGöY hPSCs,underscoring the role that reprogramming factors can play for the derivation of bona fide naive hPSCs.
View Publication