Ilic D et al. (JAN 2012)
Cytotherapy 14 September 122--8
Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions.
BACKGROUND AIMS: Human embryonic stem (hES) cells hold great potential for cell therapy and regenerative medicine because of their pluripotency and capacity for self-renewal. The conditions used to derive and culture hES cells vary between and within laboratories depending on the desired use of the cells. Until recently,stem cell culture has been carried out using feeder cells,and culture media,that contain animal products. Recent advances in technology have opened up the possibility of both xeno-free and feeder-free culture of stem cells,essential conditions for the use of stem cells for clinical purposes. To date,however,there has been limited success in achieving this aim. METHODS,RESULTS AND CONCLUSIONS: Protocols were developed for the successful derivation of two normal and three specific mutation-carrying (SMC) (Huntington's disease and myotonic dystrophy 1) genomically stable hES cell lines,and their adaptation to feeder-free culture,all under xeno-free conditions.
View Publication
文献
Ungrin MD et al. (APR 2012)
Biotechnology and bioengineering 109 4 853--66
Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics.
We present a predictive bioprocess design strategy employing cell- and molecular-level analysis of rate-limiting steps in human pluripotent stem cell (hPSC) expansion and differentiation,and apply it to produce definitive endoderm (DE) progenitors using a scalable directed-differentiation technology. We define a bioprocess optimization parameter (L; targeted cell Loss) and,with quantitative cell division tracking and fate monitoring,identify and overcome key suspension bioprocess bottlenecks. Adapting process operating conditions to pivotal parameters (single cell survival and growth rate) in a cell-line-specific manner enabled adherent-equivalent expansion of hPSCs in feeder- and matrix-free defined-medium suspension culture. Predominantly instructive differentiation mechanisms were found to underlie a subsequent 18-fold expansion,during directed differentiation,to high-purity DE competent for further commitment along pancreatic and hepatic lineages. This study demonstrates that iPSC expansion and differentiation conditions can be prospectively specified to guide the enhanced production of target cells in a scale-free directed differentiation system.
View Publication
文献
Meng G et al. (JUL 2012)
Stem cells and development 21 11 2036--48
Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions.
Human pluripotent stem cells (hPSCs),including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs),share the properties of unlimited self-renewal and the capacity to become any cell type in the body,making them well suited for regenerative medicine and cell therapy. So far,almost all hPSC lines have been directly or indirectly exposed to animal-derived products,which would hinder their use for clinical purposes. One of the biggest challenges in this area is to remove animal components from the derivation,propagation,and cryopreservation of hPSCs. Moreover,the presence of undefined components of animal or human origin in culture system may interfere with the interpretation of the effect of exogenous agents on the growth and differentiation of hPSCs and are prone to significant variability. To explore hPSC expansion in defined,xeno-free conditions,2 different groups of culture systems were used to culture different hESC and hiPSC lines. Our results suggested that (1) medium,matrix,and exogenous factors have synergistic effects on the adhesion and growth of hPSCs; (2) cooperation of exogenous factors including basic fibroblast growth factor,Rho-associated kinase inhibitor (ROCK),and other growth factors is critical for hPSC adhesion and proliferation; (3) basal media have different effects on hPSC attachment to the culture surface; and (4) a medium or matrix component can work synergistically in one culture system,and not at all in another. In this study,we found that Vitronectin/TeSR2 and PDL/HEScGRO (Y-27632) systems were optimal for maintaining the long-term culture of 3 hESC lines and 2 hiPSC lines under defined,xeno-free conditions.
View Publication
文献
Atari M et al. (JUL 2012)
Journal of cell science 125 Pt 14 3343--56
Dental pulp of the third molar: a new source of pluripotent-like stem cells.
Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However,no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work,we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF,EGF and PDGF. These cells are SSEA4(+),OCT3/4(+),NANOG(+),SOX2(+),LIN28(+),CD13(+),CD105(+),CD34(-),CD45(-),CD90(+),CD29(+),CD73(+),STRO1(+) and CD146(-),and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly,DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm,endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of GATA4,GATA6,MIXL1,NANOG,OCT3/4,SOX1 and SOX2 to determine the degree of similarity between DPPSCs,EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs,hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages,they represent an easily accessible source of stem cells,which opens a range of new possibilities for regenerative medicine.
View Publication
Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions.
This protocol describes an EDTA-based passaging procedure to be used with chemically defined E8 medium that serves as a tool for basic and translational research into human pluripotent stem cells (PSCs). In this protocol,passaging one six-well or 10-cm plate of cells takes about 6-7 min. This enzyme-free protocol achieves maximum cell survival without enzyme neutralization,centrifugation or drug treatment. It also allows for higher throughput,requires minimal material and limits contamination. Here we describe how to produce a consistent E8 medium for routine maintenance and reprogramming and how to incorporate the EDTA-based passaging procedure into human induced PSC (iPSC) derivation,colony expansion,cryopreservation and teratoma formation. This protocol has been successful in routine cell expansion,and efficient for expanding large-volume cultures or a large number of cells with preferential dissociation of PSCs. Effective for all culture stages,this procedure provides a consistent and universal approach to passaging human PSCs in E8 medium.
View Publication
文献
Fan Y et al. (NOV 2013)
Tissue Engineering Part A 20 3-4 131128071850006
Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension.
A prerequisite for the realization of human pluripotent stem cell (hPSC) therapies is the development of bioprocesses for generating clinically relevant quantities of undifferentiated hPSCs and their derivatives under xeno-free conditions. Microcarrier stirred-suspension bioreactors are an appealing modality for the scalable expansion and directed differentiation of hPSCs. Comparative analyses of commercially available microcarriers clearly show the need for developing synthetic substrates supporting the adhesion and growth of hPSCs in three-dimensional cultures under agitation-induced shear. Moreover,the low seeding efficiencies during microcarrier loading with hPSC clusters poses a significant process bottleneck. To that end,a novel protocol was developed increasing hPSC seeding efficiency from 30% to over 80% and substantially shortening the duration of microcarrier loading. Importantly,this method was combined with the engineering of polystyrene microcarriers by surface conjugation of a vitronectin-derived peptide,which was previously shown to support the growth of human embryonic stem cells. Cells proliferated on peptide-conjugated beads in static culture but widespread detachment was observed after exposure to stirring. This prompted additional treatment of the microcarriers with a synthetic polymer commonly used to enhance cell adhesion. hPSCs were successfully cultivated on these microcarriers in stirred suspension vessels for multiple consecutive passages with attachment efficiencies close to 40%. Cultured cells exhibited on average a 24-fold increase in concentration per 6-day passage,over 85% viability,and maintained a normal karyotype and the expression of pluripotency markers such as Nanog,Oct4,and SSEA4. When subjected to spontaneous differentiation in embryoid body cultures or directed differentiation to the three embryonic germ layers,the cells adopted respective fates displaying relevant markers. Lastly,engineered microcarriers were successfully utilized for the expansion and differentiation of hPSCs to mesoderm progeny in stirred suspension vessels. Hence,we demonstrate a strategy for the facile engineering of xeno-free microcarriers for stirred-suspension cultivation of hPSCs. Our findings support the use of microcarrier bioreactors for the scalable,xeno-free propagation and differentiation of human stem cells intended for therapies.
View Publication
文献
Yanai A et al. ( 2016)
Methods in molecular biology (Clifton,N.J.) 1307 357--369
Efficient Production of Photoreceptor Precursor Cells from Human Embryonic Stem Cells.
Transplantation of photoreceptor precursor cells (PPCs) differentiated from human embryonic stem cells (hESCs) is a promising approach to treat common blinding diseases such as age-related macular degeneration and retinitis pigmentosa. However,existing PPC generation methods are inefficient. To enhance differentiation protocols for rapid and high-yield production of PPCs,we focused on optimizing the handling of the cells by including feeder-independent growth of hESCs,using size-controlled embryoid bodies (EBs),and addition of triiodothyronine (T3) and taurine to the differentiation medium,with subsequent removal of undifferentiated cells via negative cell-selection. Our novel protocol produces higher yields of PPCs than previously reported while reducing the time required for differentiation,which will help understand retinal diseases and facilitate large-scale preclinical trials.
View Publication
文献
Risau W et al. (MAR 1988)
Development (Cambridge,England) 102 3 471--8
Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies.
Embryonic stem cells (ESC) have been established previously from the inner cell mass cells of mouse blastocysts. In suspension culture,they spontaneously differentiate to blood-island-containing cystic embryoid bodies (CEB). The development of blood vessels from in situ differentiating endothelial cells of blood islands,a process which we call vasculogenesis,was induced by injecting ESC into the peritoneal cavity of syngeneic mice. In the peritoneum,fusion of blood islands and formation of an in vivo-like primary capillary plexus occurred. Transplantation of ESC and ESC-derived complex and cystic embryoid bodies (ESC-CEB) onto the quail chorioallantoic membrane (CAM) induced an angiogenic response,which was directed by nonyolk sac endoderm structures. Neither yolk sac endoderm from ESC-CEB nor normal mouse yolk sac tissue induced angiogenesis on the quail CAM. Extracts from ESC-CEB stimulated the proliferation of capillary endothelial cells in vitro. Mitogenic activity increase during in vitro culture and differentiation of ESC. Almost all growth factor activity was associated with the cells. The ESC-CEB derived endothelial cell growth factor bound to heparin-sepharose. The identification of acidic fibroblast growth factor (FGF)in heparin-sepharose-purified material was accomplished by immunoblot experiments involving antibodies against acidic and basic FGF. We conclude that vasculogenesis,the development of blood vessels from in situ differentiating endothelial cells,and angiogenesis,the sprouting of capillaries from preexisting vessels are very early events during embryogenesis which can be studied using ESC differentiating in vitro. Our results suggest that vasculogenesis and angiogenesis are differently regulated.
View Publication
文献
Ware CB et al. (MAR 2014)
Proceedings of the National Academy of Sciences of the United States of America 111 12 4484--9
Derivation of naive human embryonic stem cells.
The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes,and forced expression of OCT4,KLF4,and KLF2 allows maintenance of human cells in a naïve state [Hanna J,et al. (2010) Proc Natl Acad Sci USA 107(20):9222-9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid,followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics,antibody labeling profile,gene expression,X-inactivation profile,mitochondrial morphology,microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive,but attainable,process,leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.
View Publication
文献
Gadkari R et al. (JUL 2014)
Regenerative medicine 9 4 453--465
Human embryonic stem cell derived-mesenchymal stem cells: an alternative mesenchymal stem cell source for regenerative medicine therapy.
AIM To enumerate and characterize mesenchymal stem cells (MSC) derived from human embryonic stem cells (hESC) for clinical application. MATERIALS & METHODS hESC were differentiated into hESC-MSC and characterized by the expression of surface markers using flow cytometry. hESC-MSC were evaluated with respect to growth kinetics,colony-forming potential,as well as osteogenic and adipogenic differentiation capacity. Immunosuppressive effects were assessed using peripheral blood mononuclear cell (PBMC) proliferation and cytotoxicity assays. RESULTS hESC-MSC showed similar morphology,and cell surface markers as adipose (AMSC) and bone marrow-derived MSC (BMSC). hESC-MSC exhibited a higher growth rate during early in vitro expansion and equivalent adipogenic and osteogenic differentiation and colony-forming potential as AMSC and BMSC. hESC-MSC demonstrated similar immunosuppressive effects as AMSC and BMSC. CONCLUSION hESC-MSC were comparable to BMSC and AMSC and hence can be used as an alternative source of MSC for clinical applications.
View Publication
文献
Roelandt P et al. (JAN 2013)
34 4 141--147
Directed Differentiation of Pluripotent Stem Cells to Functional Hepatocytes
Differentiation of human stem cells to hepatocytes is crucial for industrial applications as well as to develop new therapeutic strategies for liver disease. The protocol described here,using sequentially growth factors known to play a role in liver embryonic development,efficiently differentiates human embryonic stem cells (hESC) as well as human-induced pluripotent stem cells (hiPSC) to hepatocytes by directing them through defined embryonic intermediates,namely,mesendoderm/definitive endoderm and hepatoblast and hepatocyte phenotype. After 28 days,the final differentiated progeny is a mixture of cells,comprising cells with characteristics of hepatoblasts and a smaller cell fraction with morphological and phenotypical features of mature hepatocytes. An extensive functional characterization of the stem cell progeny should be used to confirm that differentiated cells display functional characteristics of mature hepatocytes including albumin secretion,glycogen storage,and several detoxifying functions such as urea production,bilirubin conjugation,glutathione S-transferase activity,cytochrome activity and drug transporter activity.
View Publication
文献
Tian L et al. ( 2016)
1353 271--283
In Vitro Modeling of Alcohol-Induced Liver Injury using Human-Induced Pluripotent Stem Cells
Alcohol consumption has long been associated with a majority of liver diseases and has been found to influence both fetal and adult liver functions. In spite of being one of the major causes of morbidity and mortality in the world,currently,there are no effective strategies that can prevent or treat alcoholic liver disease (ALD),due to a lack of human-relevant research models. Recent success in generation of functionally active mature hepatocyte-like cells from human-induced pluripotent cells (iPSCs) enables us to better understand the effects of alcohol on liver functions. Here,we describe the method and effect of alcohol exposure on multistage hepatic cell types derived from human iPSCs,in an attempt to recapitulate the early stages of liver tissue injury associated with ALD. We exposed different stages of iPSC-induced hepatic cells to ethanol at a pathophysiological concentration. In addition to stage-specific molecular markers,we measured several key cellular parameters of hepatocyte injury,including apoptosis,proliferation,and lipid accumulation.
View Publication