Khalfallah O et al. (JUL 2009)
Stem cells (Dayton,Ohio) 27 7 1529--37
Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation.
Dax-1 (Nr0b1) is an orphan member of the nuclear hormone receptor superfamily that has a key role in adrenogonadal development and function. Recent studies have also implicated Dax-1 in the transcriptional network controlling embryonic stem (ES) cell pluripotency. Here,we show that Dax-1 expression is affected by differentiating treatments and pharmacological activation of beta-catenin-dependent transcription in mouse ES cells. Furthermore,Dax-1 knockdown induced upregulation of multilineage differentiation markers,and produced enhanced differentiation and defects in ES viability and proliferation. Through RNA interference and transcriptome analysis,we have identified genes regulated by Dax-1 in mouse ES cells at 24 and 48 hours after knockdown. Strikingly,the great majority of these genes are upregulated,showing that the prevalent function of Dax-1 is to act as a transcriptional repressor in mouse ES cells,as confirmed by experiments using the Gal4 system. Genes involved in tissue differentiation and control of proliferation are significantly enriched among Dax-1-regulated transcripts. These data show that Dax-1 is an essential element in the molecular circuit involved in the maintenance of ES cell pluripotency and have implications for the understanding of stem cell function in both physiological (adrenal gland) and clinical (Ewing tumors) settings where Dax-1 plays a pivotal role in development and pathogenesis,respectively.
View Publication
Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures.
Chondrogenesis of mesenchymal stem cells (MSCs) is typically induced when they are condensed into a single aggregate and exposed to transforming growth factor-beta (TGF-beta). Hypoxia,like aggregation and TGF-beta delivery,may be crucial for complete chondrogenesis. However,the pellet dimensions and associated self-induced oxygen gradients of current chondrogenic methods may limit the effectiveness of in vitro differentiation and subsequent therapeutic uses. Here we describe the use of embryoid body-forming technology to produce microscopic aggregates of human bone marrow MSCs (BM-MSCs) for chondrogenesis. The use of micropellets reduces the formation of gradients within the aggregates,resulting in a more homogeneous and controlled microenvironment. These micropellet cultures (approximately 170 cells/micropellet) as well as conventional pellet cultures (approximately 2 x 10(5) cells/pellet) were chondrogenically induced under 20% and 2% oxygen environments for 14 days. Compared to conventional pellets under both environments,micropellets differentiated under 2% O(2) showed significantly increased sulfated glycosaminoglycan (sGAG) production and more homogeneous distribution of proteoglycans and collagen II. Aggrecan and collagen II gene expressions were increased in pellet cultures differentiated under 2% O(2) relative to 20% O(2) pellets but 2% O(2) micropellets showed even greater increases in these genes,as well as increased SOX9. These results suggest a more advanced stage of chondrogenesis in the micropellets accompanied by more homogeneous differentiation. Thus,we present a new method for enhancing MSC chondrogenesis that reveals a unique relationship between oxygen tension and aggregate size. The inherent advantages of chondrogenic micropellets over a single macroscopic aggregate should allow for easy integration with a variety of cartilage engineering strategies.
View Publication
文献
Brugger S et al. (FEB 2010)
Assay and drug development technologies 8 1 19--26
The Seventh Annual Ion Channel Retreat Vancouver, Canada, June 29-July 1, 2009.
Seven years ago,Aurora Biomed Inc. (Vancouver,BC) recognized the need to create a forum for scientific discourse spanning the spectrum of ion channel disciplines. Since then,researchers from both academia and industry have been invited each year to share their knowledge on the advancement of ion channel research and technology,drug discovery,and safety pharmacology. Aurora Biomed's 2009 Retreat continued this tradition by covering a variety of topics including Ion Channels as Disease and Pain Targets,TRP Ion Channels,Ion Channel Screening Technologies,Ion Channels in Safety Pharmacology,Structure & Function of Ion Channels,Ion Channels in Disease Pathology,and New Horizons in Life Sciences.
View Publication
文献
Kunova M et al. (NOV 2010)
Reproductive biomedicine online 21 5 676--86
Development of humanized culture medium with plant-derived serum replacement for human pluripotent stem cells.
For human embryonic stem cells (ESC) to be used in cell replacement therapies,they must be grown under good manufacturing conditions in a chemically defined medium that lacks animal proteins. This study examined the ability of a newly designed medium containing the plant-derived serum replacement VegetaCell and other reagents of human origin to support undifferentiated growth and pluripotency of human ESC. This medium was tested in several culture systems,using human fibroblasts as a feeder layer or Matrigel in a feeder-free culture. Even under the most stringent feeder-free conditions without conditioned medium,human ESC exhibited an undifferentiated morphology,expressed markers of undifferentiated cells,demonstrated high alkaline phosphatase activity and multilineage differentiation and retained a normal karyotype. Compared with human ESC grown in standard culture conditions,human ESC maintained in humanized VegetaCell medium show longer cell cycles and decreased cell death. The availability of an animal protein-free medium supplemented with the low-cost VegetaCell reagent expands the repertoire of media for culturing human ESC as well as induced pluripotent stem cells for drug testing and cell replacement therapy.
View Publication
文献
Tolar J et al. (JAN 2011)
Blood 117 3 839--47
Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome).
Mucopolysaccharidosis type I (MPS IH; Hurler syndrome) is a congenital deficiency of α-L-iduronidase,leading to lysosomal storage of glycosaminoglycans that is ultimately fatal following an insidious onset after birth. Hematopoietic cell transplantation (HCT) is a life-saving measure in MPS IH. However,because a suitable hematopoietic donor is not found for everyone,because HCT is associated with significant morbidity and mortality,and because there is no known benefit of immune reaction between the host and the donor cells in MPS IH,gene-corrected autologous stem cells may be the ideal graft for HCT. Thus,we generated induced pluripotent stem cells from 2 patients with MPS IH (MPS-iPS cells). We found that α-L-iduronidase was not required for stem cell renewal,and that MPS-iPS cells showed lysosomal storage characteristic of MPS IH and could be differentiated to both hematopoietic and nonhematopoietic cells. The specific epigenetic profile associated with de-differentiation of MPS IH fibroblasts into MPS-iPS cells was maintained when MPS-iPS cells are gene-corrected with virally delivered α-L-iduronidase. These data underscore the potential of MPS-iPS cells to generate autologous hematopoietic grafts devoid of immunologic complications of allogeneic transplantation,as well as generating nonhematopoietic cells with the potential to treat anatomical sites not fully corrected with HCT.
View Publication
文献
Vallier L (JAN 2011)
Methods in molecular biology (Clifton,N.J.) 690 57--66
Serum-free and feeder-free culture conditions for human embryonic stem cells.
Human embryonic stem cells (hESCs) are pluripotent cells derived from the embryo at the blastocyst stage. Their embryonic origin confers upon them the capacity to proliferate indefinitely in vitro while maintaining the capacity to differentiate into a large variety of cell types. Based on these properties of self-renewal and pluripotency,hESCs represent a unique source to generate a large quantity of certain specialized cell types with clinical interest for transplantation-based therapy. However,hESCs are usually grown in culture conditions using fetal bovine serum and mouse embryonic fibroblasts,two components that are not compatible with clinical applications. Consequently,the possibility to expand hESCs in serum-free and in feeder-free culture conditions is becoming a major challenge to deliver the clinical promises of hESCs. Here,we describe the basic principles of growing hESCs in a chemically defined medium (CDM) devoid of serum and feeders.
View Publication
文献
Tolar J et al. (APR 2011)
The Journal of investigative dermatology 131 4 848--56
Induced pluripotent stem cells from individuals with recessive dystrophic epidermolysis bullosa.
Recessive dystrophic epidermolysis bullosa (RDEB) is an inherited blistering skin disorder caused by mutations in the COL7A1 gene-encoding type VII collagen (Col7),the major component of anchoring fibrils at the dermal-epidermal junction. Individuals with RDEB develop painful blisters and mucosal erosions,and currently,there are no effective forms of therapy. Nevertheless,some advances in patient therapy are being made,and cell-based therapies with mesenchymal and hematopoietic cells have shown promise in early clinical trials. To establish a foundation for personalized,gene-corrected,patient-specific cell transfer,we generated induced pluripotent stem (iPS) cells from three subjects with RDEB (RDEB iPS cells). We found that Col7 was not required for stem cell renewal and that RDEB iPS cells could be differentiated into both hematopoietic and nonhematopoietic lineages. The specific epigenetic profile associated with de-differentiation of RDEB fibroblasts and keratinocytes into RDEB iPS cells was similar to that observed in wild-type (WT) iPS cells. Importantly,human WT and RDEB iPS cells differentiated in vivo into structures resembling the skin. Gene-corrected RDEB iPS cells expressed Col7. These data identify the potential of RDEB iPS cells to generate autologous hematopoietic grafts and skin cells with the inherent capacity to treat skin and mucosal erosions that typify this genodermatosis.
View Publication
文献
Nishimura K et al. (FEB 2011)
The Journal of biological chemistry 286 6 4760--71
Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming.
The ectopic expression of transcription factors can reprogram differentiated tissue cells into induced pluripotent stem cells. However,this is a slow and inefficient process,depending on the simultaneous delivery of multiple genes encoding essential reprogramming factors and on their sustained expression in target cells. Moreover,once cell reprogramming is accomplished,these exogenous reprogramming factors should be replaced with their endogenous counterparts for establishing autoregulated pluripotency. Complete and designed removal of the exogenous genes from the reprogrammed cells would be an ideal option for satisfying this latter requisite as well as for minimizing the risk of malignant cell transformation. However,no single gene delivery/expression system has ever been equipped with these contradictory characteristics. Here we report the development of a novel replication-defective and persistent Sendai virus (SeVdp) vector based on a noncytopathic variant virus,which fulfills all of these requirements for cell reprogramming. The SeVdp vector could accommodate up to four exogenous genes,deliver them efficiently into various mammalian cells (including primary tissue cells and human hematopoietic stem cells) and express them stably in the cytoplasm at a prefixed balance. Furthermore,interfering with viral transcription/replication using siRNA could erase the genomic RNA of SeVdp vector from the target cells quickly and thoroughly. A SeVdp vector installed with Oct4/Sox2/Klf4/c-Myc could reprogram mouse primary fibroblasts quite efficiently; ∼1% of the cells were reprogrammed to Nanog-positive induced pluripotent stem cells without chromosomal gene integration. Thus,this SeVdp vector has potential as a tool for advanced cell reprogramming and for stem cell research.
View Publication
文献
Kim J-E et al. (FEB 2011)
Proceedings of the National Academy of Sciences of the United States of America 108 7 3005--10
Investigating synapse formation and function using human pluripotent stem cell-derived neurons.
A major goal of stem-cell research is to identify conditions that reliably regulate their differentiation into specific cell types. This goal is particularly important for human stem cells if they are to be used for in vivo transplantation or as a platform for drug development. Here we describe the establishment of procedures to direct the differentiation of human embryonic stem cells and human induced pluripotent stem cells into forebrain neurons that are capable of forming synaptic connections. In addition,HEK293T cells expressing Neuroligin (NLGN) 3 and NLGN4,but not those containing autism-associated mutations,are able to induce presynaptic differentiation in human induced pluripotent stem cell-derived neurons. We show that a mutant NLGN4 containing an in-frame deletion is unable to localize correctly to the cell surface when overexpressed and fails to enhance synapse formation in human induced pluripotent stem cell-derived neurons. These findings establish human pluripotent stem cell-derived neurons as a viable model for the study of synaptic differentiation and function under normal and disorder-associated conditions.
View Publication
文献
Kiris E et al. (MAY 2011)
Stem cell research 6 3 195--205
Embryonic stem cell-derived motoneurons provide a highly sensitive cell culture model for botulinum neurotoxin studies, with implications for high-throughput drug discovery.
Botulinum neurotoxins (BoNTs) inhibit cholinergic synaptic transmission by specifically cleaving proteins that are crucial for neurotransmitter exocytosis. Due to the lethality of these toxins,there are elevated concerns regarding their possible use as bioterrorism agents. Moreover,their widespread use for cosmetic purposes,and as medical treatments,has increased the potential risk of accidental overdosing and environmental exposure. Hence,there is an urgent need to develop novel modalities to counter BoNT intoxication. Mammalian motoneurons are the main target of BoNTs; however,due to the difficulty and poor efficiency of the procedures required to isolate the cells,they are not suitable for high-throughput drug screening assays. Here,we explored the suitability of embryonic stem (ES) cell-derived motoneurons as a renewable,reproducible,and physiologically relevant system for BoNT studies. We found that the sensitivity of ES-derived motoneurons to BoNT/A intoxication is comparable to that of primary mouse spinal motoneurons. Additionally,we demonstrated that several BoNT/A inhibitors protected SNAP-25,the BoNT/A substrate,in the ES-derived motoneuron system. Furthermore,this system is compatible with immunofluorescence-based high-throughput studies. These data suggest that ES-derived motoneurons provide a highly sensitive system that is amenable to large-scale screenings to rapidly identify and evaluate the biological efficacies of novel therapeutics.
View Publication
文献
Bauwens CL et al. (AUG 2011)
Tissue engineering. Part A 17 15-16 1901--9
Geometric control of cardiomyogenic induction in human pluripotent stem cells.
Although it has been observed that aggregate size affects cardiac development,an incomplete understanding of the cellular mechanisms underlying human pluripotent stem cell-derived cardiomyogenesis has limited the development of robust defined-condition cardiac cell generation protocols. Our objective was thus to elucidate cellular and molecular mechanisms underlying the endogenous control of human embryonic stem cell (hESC) cardiac tissue development,and to test the hypothesis that hESC aggregate size influences extraembryonic endoderm (ExE) commitment and cardiac inductive properties. hESC aggregates were generated with 100,1000,or 4000 cells per aggregate using microwells. The frequency of endoderm marker (FoxA2 and GATA6)-expressing cells decreased with increasing aggregate size during early differentiation. Cardiogenesis was maximized in aggregates initiated from 1000 cells,with frequencies of 0.49±0.06 cells exhibiting a cardiac progenitor phenotype (KDR(low)/C-KIT(neg)) on day 5 and 0.24±0.06 expressing cardiac Troponin T on day 16. A direct relationship between ExE and cardiac differentiation efficiency was established by forming aggregates with varying ratios of SOX7 (a transcription factor required for ExE development) overexpressing or knockdown hESCs to unmanipulated hESCs. We demonstrate,in a defined,serum-free cardiac induction system,that robust and efficient cardiac differentiation is a function of endogenous ExE cell concentration,a parameter that can be directly modulated by controlling hESC aggregate size.
View Publication
文献
Cook BD et al. (JUN 2011)
Blood 117 24 6489--97
Smad1 signaling restricts hematopoietic potential after promoting hemangioblast commitment.
Bone morphogenetic protein (BMP) signaling regulates embryonic hematopoiesis via receptor-mediated activation of downstream SMAD proteins,including SMAD1. In previous work,we showed that Smad1 expression is sufficient to enhance commitment of mesoderm to hemangioblast fate. We also found indirect evidence to support a subsequent repressive function for Smad1 in hematopoiesis. To test this hypothesis directly,we developed a novel system allowing temporal control of Smad1 levels by conditional knockdown in embryonic stem cell derivatives. Depletion of Smad1 in embryoid body cultures before hemangioblast commitment limits hematopoietic potential because of a block in mesoderm development. Conversely,when Smad1 is depleted in FlK1(+) mesoderm,at a stage after hemangioblast commitment,the pool of hematopoietic progenitors is expanded. This involves enhanced expression levels for genes specific to hematopoiesis,including Gata1,Runx1 and Eklf,rather than factors required for earlier specification of the hemangioblast. The phenotype correlates with increased nuclear SMAD2 activity,indicating molecular cross-regulation between the BMP and TGF-β signaling pathways. Consistent with this mechanism,hematopoiesis was enhanced when Smad2 was directly expressed during this same developmental window. Therefore,this study reveals a temporally defined function for Smad1 in restricting the expansion of early hematopoietic progenitors.
View Publication