Daynac M et al. (FEB 2016)
Scientific reports 6 21505
Age-related neurogenesis decline in the subventricular zone is associated with specific cell cycle regulation changes in activated neural stem cells.
Although neural stem cells (NSCs) sustain continuous neurogenesis throughout the adult lifespan of mammals,they progressively exhibit proliferation defects that contribute to a sharp reduction in subventricular neurogenesis during aging. However,little is known regarding the early age-related events in neurogenic niches. Using a fluorescence-activated cell sorting technique that allows for the prospective purification of the main neurogenic populations from the subventricular zone (SVZ),we demonstrated an early decline in adult neurogenesis with a dramatic loss of progenitor cells in 4 month-old young adult mice. Whereas the activated and quiescent NSC pools remained stable up to 12 months,the proliferative status of activated NSCs was already altered by 6 months,with an overall extension of the cell cycle resulting from a specific lengthening of G1. Whole genome analysis of activated NSCs from 2- and 6-month-old mice further revealed distinct transcriptomic and molecular signatures,as well as a modulation of the TGFβ signalling pathway. Our microarray study constitutes a cogent identification of new molecular players and signalling pathways regulating adult neurogenesis and its early modifications.
View Publication
文献
Daynac M et al. (JUL 2013)
Stem Cell Research 11 1 516--528
Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage
Quiescent neural stem cells (NSCs) are considered the reservoir for adult neurogenesis,generating new neurons throughout life. Until now,their isolation has not been reported,which has hampered studies of their regulatory mechanisms. We sorted by FACS quiescent NSCs and their progeny from the subventricular zone (SVZ) of adult mice according to the expression of the NSC marker LeX/CD15,the EGF receptor (EGFR) and the CD24 in combination with the vital DNA marker Hoechst 33342. Characterization of sorted cells showed that the LeX(bright)/EGFR-negative population was enriched in quiescent cells having an NSC phenotype. In contrast to proliferating NSCs and progenitors,the LeX(bright)/EGFR-negative cells,i.e. quiescent NSCs,resisted to a moderate dose of gamma-radiation (4Gy),entered the cell cycle two days after irradiation prior to EGFR acquisition and ultimately repopulated the SVZ. We further show that the GABAAR signaling regulates their cell cycle entry by using specific GABAAR agonists/antagonists and that the radiation-induced depletion of neuroblasts,the major GABA source,provoked their proliferation in the irradiated SVZ. Our study demonstrates that quiescent NSCs are specifically enriched in the LeX(bright)/EGFR-negative population,and identifies the GABAAR signaling as a regulator of the SVZ niche size by modulating the quiescence of NSCs.
View Publication
文献
Dai W et al. (JUL 2015)
Nature communications 6 7576
A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status.
Nervous system (NS) development relies on coherent upregulation of extensive sets of genes in a precise spatiotemporal manner. How such transcriptome-wide effects are orchestrated at the molecular level remains an open question. Here we show that 3'-untranslated regions (3' UTRs) of multiple neural transcripts contain AU-rich cis-elements (AREs) recognized by tristetraprolin (TTP/Zfp36),an RNA-binding protein previously implicated in regulation of mRNA stability. We further demonstrate that the efficiency of ARE-dependent mRNA degradation declines in the neural lineage because of a decrease in the TTP protein expression mediated by the NS-enriched microRNA miR-9. Importantly,TTP downregulation in this context is essential for proper neuronal differentiation. On the other hand,inactivation of TTP in non-neuronal cells leads to dramatic upregulation of multiple NS-specific genes. We conclude that the newly identified miR-9/TTP circuitry limits unscheduled accumulation of neuronal mRNAs in non-neuronal cells and ensures coordinated upregulation of these transcripts in neurons.
View Publication
文献
Dai D-F et al. ( 2017)
Stem cells international 2017 5153625
Mitochondrial Maturation in Human Pluripotent Stem Cell Derived Cardiomyocytes.
Human pluripotent stem cells derived cardiomyocytes (PSC-CMs) have been widely used for disease modeling,drug safety screening,and preclinical cell therapy to regenerate myocardium. Most studies have utilized PSC-CM grown in vitro for a relatively short period after differentiation. These PSC-CMs demonstrated structural,electrophysiological,and mechanical features of primitive cardiomyocytes. A few studies have extended in vitro PSC-CM culture time and reported improved maturation of structural and electromechanical properties. The degree of mitochondrial maturation,however,remains unclear. This study characterized the development of mitochondria during prolonged in vitro culture. PSC-CM demonstrated an improved mitochondrial maturation with prolonged culture,in terms of increased mitochondrial relative abundance,enhanced membrane potential,and increased activity of several mitochondrial respiratory complexes. These are in parallel with the maturation of other cellular components. However,the maturation of mitochondria in PSC-CMs grown for extended in vitro culture exhibits suboptimal maturation when compared with the maturation of mitochondria observed in the human fetal heart during similar time interval.
View Publication
Systemically administered AAV9-sTRAIL combats invasive glioblastoma in a patient-derived orthotopic xenograft model.
Adeno-associated virus (AAV) vectors expressing tumoricidal genes injected directly into brain tumors have shown some promise,however,invasive tumor cells are relatively unaffected. Systemic injection of AAV9 vectors provides widespread delivery to the brain and potentially the tumor/microenvironment. Here we assessed AAV9 for potential glioblastoma therapy using two different promoters driving the expression of the secreted anti-cancer agent sTRAIL as a transgene model; the ubiquitously active chicken β-actin (CBA) promoter and the neuron-specific enolase (NSE) promoter to restrict expression in brain. Intravenous injection of AAV9 vectors encoding a bioluminescent reporter showed similar distribution patterns,although the NSE promoter yielded 100-fold lower expression in the abdomen (liver),with the brain-to-liver expression ratio remaining the same. The main cell types targeted by the CBA promoter were astrocytes,neurons and endothelial cells,while expression by NSE promoter mostly occurred in neurons. Intravenous administration of either AAV9-CBA-sTRAIL or AAV9-NSE-sTRAIL vectors to mice bearing intracranial patient-derived glioblastoma xenografts led to a slower tumor growth and significantly increased survival,with the CBA promoter having higher efficacy. To our knowledge,this is the first report showing the potential of systemic injection of AAV9 vector encoding a therapeutic gene for the treatment of brain tumors.
View Publication
文献
Cortjens B et al. (MAY 2017)
Journal of virology 91 10 1--15
Broadly Reactive Anti-Respiratory Syncytial Virus G Antibodies from Exposed Individuals Effectively Inhibit Infection of Primary Airway Epithelial Cells.
Respiratory syncytial virus (RSV) causes severe respiratory disease in young children. Antibodies specific for the RSV prefusion F protein have guided RSV vaccine research,and in human serum,these antibodies contribute to<90% of the neutralization response; however,detailed insight into the composition of the human B cell repertoire against RSV is still largely unknown. In order to study the B cell repertoire of three healthy donors for specificity against RSV,CD27+memory B cells were isolated and immortalized using BCL6 and Bcl-xL. Of the circulating memory B cells,0.35% recognized RSV-A2-infected cells,of which 59% were IgA-expressing cells and 41% were IgG-expressing cells. When we generated monoclonal B cells selected for high binding to RSV-infected cells,44.5% of IgG-expressing B cells and 56% of IgA-expressing B cells reacted to the F protein,while,unexpectedly,41.5% of IgG-expressing B cells and 44% of IgA expressing B cells reacted to the G protein. Analysis of the G-specific antibodies revealed that 4 different domains on the G protein were recognized. These epitopes predicted cross-reactivity between RSV strain A (RSV-A) and RSV-B and matched the potency of antibodies to neutralize RSV in HEp-2 cells and in primary epithelial cell cultures. G-specific antibodies were also able to induce antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis of RSV-A2-infected cells. However,these processes did not seem to depend on a specific epitope. In conclusion,healthy adults harbor a diverse repertoire of RSV glycoprotein-specific antibodies with a broad range of effector functions that likely play an important role in antiviral immunity.IMPORTANCEHuman RSV remains the most common cause of severe lower respiratory tract disease in premature babies,young infants,the elderly,and immunocompromised patients and plays an important role in asthma exacerbations. In developing countries,RSV lower respiratory tract disease has a high mortality. Without an effective vaccine,only passive immunization with palivizumab is approved for prophylactic treatment. However,highly potent RSV-specific monoclonal antibodies could potentially serve as a therapeutic treatment and contribute to disease control and mortality reduction. In addition,these antibodies could guide further vaccine development. In this study,we isolated and characterized several novel antibodies directed at the RSV G protein. This information can add to our understanding and treatment of RSV disease.
View Publication
文献
Corté et al. (JUL 2015)
Biology open 4 9 1077--86
Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here,we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system,we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly,the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH,hormones used in therapeutic treatment in humans. Finally,we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus,we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons.
View Publication
文献
Cook PJ et al. ( 2016)
Neuro-oncology 18 10 1379--89
Cox-2-derived PGE2 induces Id1-dependent radiation resistance and self-renewal in experimental glioblastoma.
BACKGROUND In glioblastoma (GBM),Id1 serves as a functional marker for self-renewing cancer stem-like cells. We investigated the mechanism by which cyclooxygenase-2 (Cox-2)-derived prostaglandin E2 (PGE2) induces Id1 and increases GBM self-renewal and radiation resistance. METHODS Mouse and human GBM cells were stimulated with dimethyl-PGE2 (dmPGE2),a stabilized form of PGE2,to test for Id1 induction. To elucidate the signal transduction pathway governing the increase in Id1,a combination of short interfering RNA knockdown and small molecule inhibitors and activators of PGE2 signaling were used. Western blotting,quantitative real-time (qRT)-PCR,and chromatin immunoprecipitation assays were employed. Sphere formation and radiation resistance were measured in cultured primary cells. Immunohistochemical analyses were carried out to evaluate the Cox-2-Id1 axis in experimental GBM. RESULTS In GBM cells,dmPGE2 stimulates the EP4 receptor leading to activation of ERK1/2 MAPK. This leads,in turn,to upregulation of the early growth response1 (Egr1) transcription factor and enhanced Id1 expression. Activation of this pathway increases self-renewal capacity and resistance to radiation-induced DNA damage,which are dependent on Id1. CONCLUSIONS In GBM,Cox-2-derived PGE2 induces Id1 via EP4-dependent activation of MAPK signaling and the Egr1 transcription factor. PGE2-mediated induction of Id1 is required for optimal tumor cell self-renewal and radiation resistance. Collectively,these findings identify Id1 as a key mediator of PGE2-dependent modulation of radiation response and lend insight into the mechanisms underlying radiation resistance in GBM patients.
View Publication
文献
Chung D et al. (JAN 2014)
The Veterinary Journal 199 1 123--130
Effect of hypoxia on generation of neurospheres from adipose tissue-derived canine mesenchymal stromal cells
Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are good candidates for cell therapy due to the accessibility of fat tissue and the abundance of AT-MSCs therein. Neurospheres are free-floating spherical condensations of cells with neural stem/progenitor cell (NSPC) characteristics that can be derived from AT-MSCs. The aims of this study were to examine the influence of oxygen (O2) tension on generation of neurospheres from canine AT-MSCs (AT-cMSCs) and to develop a hypoxic cell culture system to enhance the survival and therapeutic benefit of generated neurospheres. AT-cMSCs were cultured under varying oxygen tensions (1%,5% and 21%) in a neurosphere culture system. Neurosphere number and area were evaluated and NSPC markers were quantified using real-time quantitative PCR (qPCR). Effects of oxygen on neurosphere expression of hypoxia inducible factor 1,α subunit (HIF1A) and its target genes,erythropoietin receptor (EPOR),chemokine (C-X-C motif) receptor 4 (CXCR4) and vascular endothelial growth factor (VEGF),were quantified by qPCR. Neural differentiation potential was evaluated in 21% O2 by cell morphology and qPCR. Neurospheres were successfully generated from AT-cMSCs at all O2 tensions. Expression of nestin mRNA (NES) was significantly increased after neurosphere culture and was significantly higher in 1% O2 compared to 5% and 21% O2. Neurospheres cultured in 1% O2 had significantly increased levels of VEGF and EPOR. There was a significant increase in CXCR4 expression in neurospheres generated at all O2 tensions. Neurosphere culture under hypoxia had no negative effect on subsequent neural differentiation. This study suggests that generation of neurospheres under hypoxia could be beneficial when considering these cells for neurological cell therapies.
View Publication
文献
Chou S-J et al. (APR 2017)
International journal of cardiology 232 255--263
Energy utilization of induced pluripotent stem cell-derived cardiomyocyte in Fabry disease.
BACKGROUND Fabry disease (FD) is a lysosomal storage disease in which glycosphingolipids (GB3) accumulate in organs of the human body,leading to idiopathic hypertrophic cardiomyopathy and target organ damage. Its pathophysiology is still poorly understood. OBJECTIVES We aimed to generate patient-specific induced pluripotent stem cells (iPSC) from FD patients presenting cardiomyopathy to determine whether the model could recapitulate key features of the disease phenotype and to investigate the energy metabolism in Fabry disease. METHODS Peripheral blood mononuclear cells from a 30-year-old Chinese man with a diagnosis of Fabry disease,GLA gene (IVS4+919G>A) mutation were reprogrammed into iPSCs and differentiated into iPSC-CMs and energy metabolism was analyzed in iPSC-CMs. RESULTS The FD-iPSC-CMs recapitulated numerous aspects of the FD phenotype including reduced GLA activity,cellular hypertrophy,GB3 accumulation and impaired contractility. Decreased energy metabolism with energy utilization shift to glycolysis was observed,but the decreased energy metabolism was not modified by enzyme rescue replacement (ERT) in FD-iPSCs-CMs. CONCLUSION This model provided a promising in vitro model for the investigation of the underlying disease mechanism and development of novel therapeutic strategies for FD. This potential remedy for enhancing the energetic network and utility efficiency warrants further study to identify novel therapies for the disease.
View Publication
文献
Choi SA et al. (NOV 2012)
Cancer Letters 324 2 221--230
A distinct subpopulation within CD133 positive brain tumor cells shares characteristics with endothelial progenitor cells
The cell surface marker CD133 has been proposed as a brain tumor stem cell marker. However,there have been substantial controversies regarding the necessity and role of CD133 in tumorigenesis. This study aimed to characterize CD133(+) cells in brain tumors. Human brain tumor specimens and whole blood were collected from the same patients (N=12). We carried out dual FACS staining for CD133/CD34 and functional tumorigenesis and angiogenesis analyses of CD133(+) cells from different origins. We also investigated the in vivo tumorigenic potential and histological characteristics of four distinct groups on the basis of expression of CD133/CD34 markers (CD133(+),CD133(+)/CD34(+),CD133(+)/CD34(-),and CD133(-)). CD133(+) brain tumor cells coexpressed significantly higher positivity for CD34 (70.7±5.2% in CD133(+) vs. 12.3±4.2% in CD133(-) cells,P<0.001). CD133(+) brain tumor cells formed neurosphere-like spheroids and differentiated into multiple nervous system lineages unlike CD133(+) blood cells. They showed biological characteristics of endothelial cells,including vWF expression,LDL uptake and tube formation in vitro,unlike CD133(-) brain tumors cells. Pathologic analysis of brains implanted with CD133(+) cells showed large,markedly hypervascular tumors with well-demarcated boundary. CD133(+)/CD34(-) cells produced smaller but highly infiltrative tumors. Notably,pure angiogenic cell fractions (CD133(+)/CD34(+)) and CD133(-) tumor cells did not generate tumors in vivo. Our data suggest the presence of a distinct subpopulation of CD133(+) cells isolated from human brain tumors,with characteristics of endothelial progenitor cells (EPCs).
View Publication
文献
Choi H et al. (AUG 2013)
Stem Cells and Development 22 15 2112--2120
Coenzyme Q10 Restores Amyloid Beta-Inhibited Proliferation of Neural Stem Cells by Activating the PI3K Pathway
Neurogenesis in the adult brain is important for memory and learning,and the alterations in neural stem cells (NSCs) may be an important part of Alzheimer's disease pathogenesis. The phosphatidylinositol 3-kinase (PI3K) pathway has been suggested to play an important role in neuronal cell survival and is highly involved in adult neurogenesis. Recently,coenzyme Q10 (CoQ10) was found to affect the PI3K pathway. We investigated whether CoQ10 could restore amyloid β (Aβ)25-35 oligomer-inhibited proliferation of NSCs by focusing on the PI3K pathway. To evaluate the effects of CoQ10 on Aβ25-35 oligomer-inhibited proliferation of NSCs,NSCs were treated with several concentrations of CoQ10 and/or Aβ25-35 oligomers. BrdU labeling,Colony Formation Assays,and immunoreactivity of Ki-67,a marker of proliferative activity,showed that NSC proliferation decreased with Aβ25-35 oligomer treatment,but combined treatment with CoQ10 restored it. Western blotting showed that CoQ10 treatment increased the expression levels of p85α PI3K,phosphorylated Akt (Ser473),phosphorylated glycogen synthase kinase-3β (Ser9),and heat shock transcription factor,which are proteins related to the PI3K pathway in Aβ25-35 oligomers-treated NSCs. To confirm a direct role for the PI3K pathway in CoQ10-induced restoration of proliferation of NSCs inhibited by Aβ25-35 oligomers,NSCs were pretreated with a PI3K inhibitor,LY294002; the effects of CoQ10 on the proliferation of NSCs inhibited by Aβ25-35 oligomers were almost completely blocked. Together,these results suggest that CoQ10 restores Aβ25-35 oligomer-inhibited proliferation of NSCs by activating the PI3K pathway.
View Publication