A. Sehgal et al. (MAR 2018)
Nature communications 9 1 1272
The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche.
Colony-stimulating factor 1 (CSF1) controls the growth and differentiation of macrophages.CSF1R signaling has been implicated in the maintenance of the intestinal stem cell niche and differentiation of Paneth cells,but evidence of expression of CSF1R within the crypt is equivocal. Here we show that CSF1R-dependent macrophages influence intestinal epithelial differentiation and homeostasis. In the intestinal lamina propria CSF1R mRNA expression is restricted to macrophages which are intimately associated with the crypt epithelium,and is undetectable in Paneth cells. Macrophage ablation following CSF1R blockade affects Paneth cell differentiation and leads to a reduction of Lgr5+ intestinal stem cells. The disturbances to the crypt caused by macrophage depletion adversely affect the subsequent differentiation of intestinal epithelial cell lineages. Goblet cell density is enhanced,whereas the development of M cells in Peyer's patches is impeded. We suggest that modification of the phenotype or abundance of macrophages in the gut wall alters the development of the intestinal epithelium and the ability to sample gut antigens.
View Publication
文献
S. Sampath et al. (FEB 2018)
Oncotarget 9 13 11279--11290
Combined modality radiation therapy promotes tolerogenic myeloid cell populations and STAT3-related gene expression in head and neck cancer patients.
Immunomodulation contributes to the antitumor efficacy of the fractionated radiation therapy (RT). Here,we describe immune effects of RT with concurrent systemic cisplatin or cetuximab treatment of patients with stage III-IV head and neck squamous cell carcinoma (HNSCC). Using longitudinally collected blood samples,we identified significant changes in cytokines/chemokines and immune cell populations compared to immune-related gene expression profiles in peripheral blood mononuclear cells (PBMCs). The 7-week combinatorial RT resulted in gradual elevation of proinflammatory mediators (IFNgamma$,IL-6,TNFɑ,CCL2),while levels of IL-12,cytokine essential for antitumor immune responses,were decreased. These effects correlated with progressive accumulation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) with detectable activity of STAT3 and PD-L1 expression,underscoring tolerogenic effects of MDSCs. Correspondingly,gene expression analysis of PBMCs harvested after two weeks of combinatorial RT,found upregulation of several immunosuppressive mediators. These included IL6,IL6R,STAT3 and PDL1,which could represent IL-6/STAT3-driven tolerogenic signaling,which inhibits T cell and NK activity. Overall,our results suggest that potential immunostimulatory effects of combinatorial RT in HNSCC patients are likely limited by tolerogenic STAT3 signaling and PD-L1 upregulation in myeloid immune cells. Further studies will clarify whether STAT3 targeting could augment RT efficacy and durability of antitumor responses.
View Publication
文献
A. I. Salter et al. (AUG 2018)
Science signaling 11 544
Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function.
Chimeric antigen receptors (CARs) link an antigen recognition domain to intracellular signaling domains to redirect T cell specificity and function. T cells expressing CARs with CD28/CD3$\zeta$ or 4-1BB/CD3$\zeta$ signaling domains are effective at treating refractory B cell malignancies but exhibit differences in effector function,clinical efficacy,and toxicity that are assumed to result from the activation of divergent signaling cascades. We analyzed stimulation-induced phosphorylation events in primary human CD8+ CD28/CD3$\zeta$ and 4-1BB/CD3$\zeta$ CAR T cells by mass spectrometry and found that both CAR constructs activated similar signaling intermediates. Stimulation of CD28/CD3$\zeta$ CARs activated faster and larger-magnitude changes in protein phosphorylation,which correlated with an effector T cell-like phenotype and function. In contrast,4-1BB/CD3$\zeta$ CAR T cells preferentially expressed T cell memory-associated genes and exhibited sustained antitumor activity against established tumors in vivo. Mutagenesis of the CAR CD28 signaling domain demonstrated that the increased CD28/CD3$\zeta$ CAR signal intensity was partly related to constitutive association of Lck with this domain in CAR complexes. Our data show that CAR signaling pathways cannot be predicted solely by the domains used to construct the receptor and that signal strength is a key determinant of T cell fate. Thus,tailoring CAR design based on signal strength may lead to improved clinical efficacy and reduced toxicity.
View Publication
文献
S. B. Ross et al. ( 2017)
Stem cell research 20 88--90
Generation of induced pluripotent stem cells (iPSCs) from a hypertrophic cardiomyopathy patient with the pathogenic variant p.Val698Ala in beta-myosin heavy chain (MYH7) gene.
Induced pluripotent stem cells (iPSCs) were generated from peripheral blood mononuclear cells (PBMCs) isolated from the whole blood of a 43-year-old male with hypertrophic cardiomyopathy (HCM) who carries the pathogenic variant p.Val698Ala in beta-myosin heavy chain (MYH7). Patient-derived PBMCs were reprogrammed using non-integrative episomal vectors containing reprogramming factors OCT4,SOX2,LIN28,KLF4 and L-MYC. iPSCs were shown to express pluripotent markers,have trilineage differentiation potential,carry the pathogenic MYH7 variant p.Val698Ala,have a normal karyotype and no longer carry the episomal reprogramming vector. This line is useful for studying the link between variants in MYH7 and the pathogenesis of HCM.
View Publication
文献
S. B. Ross et al. ( 2017)
Stem cell research 20 76--79
Peripheral blood derived induced pluripotent stem cells (iPSCs) from a female with familial hypertrophic cardiomyopathy.
Induced pluripotent stem cells (iPSCs) were generated from peripheral blood mononuclear cells (PBMCs) obtained from a 62-year-old female with familial hypertrophic cardiomyopathy (HCM). PBMCs were reprogrammed to a pluripotent state following transfection with non-integrative episomal vectors carrying reprogramming factors OCT4,SOX2,LIN28,KLF4 and L-MYC. iPSCs were shown to express pluripotency markers,possess trilineage differentiation potential,carry rare variants identified in DNA isolated directly from the patient's whole blood,have a normal karyotype and no longer carry episomal vectors for reprogramming. This line is a useful resource for identifying unknown genetic causes of HCM.
View Publication
文献
U. Rajamani et al. (MAY 2018)
Cell stem cell 22 5 698--712.e9
The hypothalamus contains neurons that integrate hunger and satiety endocrine signals from the periphery and are implicated in the pathophysiology of obesity. The limited availability of human hypothalamic neurons hampers our understanding of obesity disease mechanisms. To address this,we generated human induced pluripotent stem cells (hiPSCs) from multiple normal body mass index (BMI; BMI ≤ 25) subjects and super-obese (OBS) donors (BMI ≥ 50) with polygenic coding variants in obesity-associated genes. We developed a method to reliably differentiate hiPSCs into hypothalamic-like neurons (iHTNs) capable of secreting orexigenic and anorexigenic neuropeptides. Transcriptomic profiling revealed that,although iHTNs maintain a fetal identity,they respond appropriately to metabolic hormones ghrelin and leptin. Notably,OBS iHTNs retained disease signatures and phenotypes of high BMI,exhibiting dysregulated respiratory function,ghrelin-leptin signaling,axonal guidance,glutamate receptors,and endoplasmic reticulum (ER) stress pathways. Thus,human iHTNs provide a powerful platform to study obesity and gene-environment interactions.
View Publication
文献
S. J. Priceman et al. ( 2018)
Oncoimmunology 7 2 e1380764
Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer.
Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy,given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens,including prostate stem-cell antigen (PSCA),are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial,it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with on-target off-tumor" activity. Here
View Publication
文献
P. Opazo et al. (JUN 2018)
Cell reports 23 11 3137--3145
Alzheimer's disease (AD) is emerging as a synaptopathology driven by metaplasticity. Indeed,reminiscent of metaplasticity,oligomeric forms of the amyloid-beta$ peptide (oAbeta$) prevent induction of long-term potentiation (LTP) via the prior activation of GluN2B-containing NMDA receptors (NMDARs). However,the downstream Ca2+-dependent signaling molecules that mediate aberrant metaplasticity are unknown. In this study,we show that oAbeta$ promotes the activation of Ca2+/calmodulin-dependent kinase II (CaMKII) via GluN2B-containing NMDARs. Importantly,we find that CaMKII inhibition rescues both the LTP impairment and the dendritic spine loss mediated by oAbeta$. Mechanistically resembling metaplasticity,oAbeta$ prevents subsequent rounds of plasticity from inducing CaMKII T286 autophosphorylation,as well as the associated anchoring and accumulation of synaptic AMPA receptors (AMPARs). Finally,prolonged oAbeta$ treatment-induced CaMKII misactivation leads to dendritic spine loss via the destabilization of surface AMPARs. Thus,our study demonstrates that oAbeta$ engages synaptic metaplasticity via aberrant CaMKII activation.
View Publication
文献
A. Odawara et al. (JUL 2018)
Scientific reports 8 1 10416
Toxicological evaluation of convulsant and anticonvulsant drugs in human induced pluripotent stem cell-derived cortical neuronal networks using an MEA system.
Functional evaluation assays using human induced pluripotent stem cell (hiPSC)-derived neurons can predict the convulsion toxicity of new drugs and the neurological effects of antiepileptic drugs. However,differences in responsiveness depending on convulsant type and antiepileptic drugs,and an evaluation index capable of comparing in vitro responses with in vivo responses are not well known. We observed the difference in synchronized burst patterns in the epileptiform activities induced by pentylentetrazole (PTZ) and 4-aminopryridine (4-AP) with different action mechanisms using multi-electrode arrays (MEAs); we also observed that 100 µM of the antiepileptic drug phenytoin suppressed epileptiform activities induced by PTZ,but increased those induced by 4-AP. To compare in vitro results with in vivo convulsive responses,frequency analysis of below 250 Hz,excluding the spike component,was performed. The in vivo convulsive firing enhancement of the high gamma$ wave and beta$ wave component were observed remarkably in in vitro hiPSC-derived neurons with astrocytes in co-culture. MEA measurement of hiPSC-derived neurons in co-culture with astrocytes and our analysis methods,including frequency analysis,appear effective for predicting convulsion toxicity,side effects,and their mechanism of action as well as the comparison of convulsions induced in vivo.
View Publication
文献
A. H. Nile et al. (JUN 2018)
Nature chemical biology 14 6 582--590
A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells.
Regeneration of the adult intestinal epithelium is mediated by a pool of cycling stem cells,which are located at the base of the crypt,that express leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5). The Frizzled (FZD) 7 receptor (FZD7) is enriched in LGR5+ intestinal stem cells and plays a critical role in their self-renewal. Yet,drug discovery approaches and structural bases for targeting specific FZD isoforms remain poorly defined. FZD proteins interact with Wnt signaling proteins via,in part,a lipid-binding groove on the extracellular cysteine-rich domain (CRD) of the FZD receptor. Here we report the identification of a potent peptide that selectively binds to the FZD7 CRD at a previously uncharacterized site and alters the conformation of the CRD and the architecture of its lipid-binding groove. Treatment with the FZD7-binding peptide impaired Wnt signaling in cultured cells and stem cell function in intestinal organoids. Together,our data illustrate that targeting the lipid-binding groove holds promise as an approach for achieving isoform-selective FZD receptor inhibition.
View Publication
文献
C. L. Moreno et al. ( 2018)
Molecular neurodegeneration 13 1 33
BACKGROUND Type 2 diabetes (T2D) is a recognized risk factor for the development of cognitive impairment (CI) and/or dementia,although the exact nature of the molecular pathology of T2D-associated CI remains obscure. One link between T2D and CI might involve decreased insulin signaling in brain and/or neurons in either animal or postmortem human brains as has been reported as a feature of Alzheimer's disease (AD). Here we asked if neuronal insulin resistance is a cell autonomous phenomenon in a familial form of AD. METHODS We have applied a newly developed protocol for deriving human basal forebrain cholinergic neurons (BFCN) from skin fibroblasts via induced pluripotent stem cell (iPSC) technology. We generated wildtype and familial AD mutant PSEN2 N141I (presenilin 2) BFCNs and assessed if insulin signaling,insulin regulation of the major AD proteins Abeta$ and/or tau,and/or calcium fluxes is altered by the PSEN2 N141I mutation. RESULTS We report herein that wildtype,PSEN2 N141I and CRISPR/Cas9-corrected iPSC-derived BFCNs (and their precursors) show indistinguishable insulin signaling profiles as determined by the phosphorylation of canonical insulin signaling pathway molecules. Chronic insulin treatment of BFCNs of all genotypes led to a reduction in the Abeta$42/40 ratio. Unexpectedly,we found a CRISPR/Cas9-correctable effect of PSEN2 N141I on calcium flux,which could be prevented by chronic exposure of BFCNs to insulin. CONCLUSIONS Our studies indicate that the familial AD mutation PSEN2 N141I does not induce neuronal insulin resistance in a cell autonomous fashion. The ability of insulin to correct calcium fluxes and to lower Abeta$42/40 ratio suggests that insulin acts to oppose an AD-pathophysiology. Hence,our results are consistent with a potential physiological role for insulin as a mediator of resilience by counteracting specific metabolic and molecular features of AD.
View Publication
文献
H. Migalovich Sheikhet et al. ( 2018)
Frontiers in immunology 9 753
Dysregulated CD25 and Cytokine Expression by gamma$delta$ T Cells of Systemic Sclerosis Patients Stimulated With Cardiolipin and Zoledronate.
Objectives gamma$delta$ T cells,a non-conventional innate lymphocyte subset containing cells that can be activated by lipids and phosphoantigens,are abnormally regulated in systemic sclerosis (SSc). To further evaluate the significance of this dysregulation,we compared how exposure to an autoantigenic lipid,cardiolipin (CL),during co-stimulation with an amino-bisphosphonate (zoledronate,zol),affects the activation and cytokine production of SSc and healthy control (HC) gamma$delta$ T cells. Methods Expression of CD25 on Vgamma$9+,Vdelta$1+,and total CD3+ T cells in cultured peripheral blood mononuclear cells (PBMCs),their binding of CD1d tetramers,and the effect of monoclonal antibody (mAb) blockade of CD1d were monitored by flow cytometry after 4 days of in vitro culture. Intracellular production of IFNgamma$ and IL-4 was assessed after overnight culture. Results Percentages of CD25+ among CD3+ and Vdelta$1+ T cells were elevated significantly in short-term cultured SSc PBMC compared to HC. In SSc but not HC,CL and zol,respectively,suppressed {\%}CD25+ Vgamma$9+ and Vdelta$1+ T cells but,when combined,CL + zol significantly activated both subsets in HC and partially reversed inhibition by the individual reagents in SSc. Importantly,Vdelta$1+ T cells in both SSc and HC were highly reactive with lipid presenting CD1d tetramers,and a CD1d-blocking mAb decreased CL-induced enhancement of {\%}SSc CD25+ Vdelta$1+ T cells in the presence of zol. {\%}IFNgamma$+ cells among Vgamma$9+ T cells of SSc was lower than HC cultured in medium,CL,zol,or CL + zol,whereas {\%}IFNgamma$+ Vdelta$1+ T cells was lower only in the presence of CL or CL + zol. {\%}IL-4+ T cells were similar in SSc and HC in all conditions,with the exception of being increased in SSc Vgamma$9+ T cells in the presence of CL. Conclusion Abnormal functional responses of gamma$delta$ T cell subsets to stimulation by CL and phosphoantigens in SSc may contribute to fibrosis and immunosuppression,characteristics of this disease.
View Publication