EPCR expression marks UM171-expanded CD34+ cord blood stem cells.
A small subset of human cord blood CD34+ cells express endothelial protein C receptor (EPCR/CD201/PROCR) when exposed to the hematopoietic stem cell (HSC) self-renewal agonist UM171. In this article,we show that EPCR-positive UM171-treated cells,as opposed to EPCR-negative cells,exhibit robust multilineage repopulation and serial reconstitution ability in immunocompromised mice. In contrast to other stem cell markers,such as CD38,EPCR expression is maintained when cells are introduced in culture,irrespective of UM171 treatment. Although engineered overexpression of EPCR fails to reproduce the effects of UM171 on HSC activity,its expression is required for the repopulating activity of human HSCs. Altogether,our results indicate that EPCR is a reliable and cell culture-compatible marker of UM171-expanded human cord blood HSCs.
View Publication
文献
K. Trakarnsanga et al. ( 2017)
Nature communications 8 14750
An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells.
With increasing worldwide demand for safe blood,there is much interest in generating red blood cells in vitro as an alternative clinical product. However,available methods for in vitro generation of red cells from adult and cord blood progenitors do not yet provide a sustainable supply,and current systems using pluripotent stem cells as progenitors do not generate viable red cells. We have taken an alternative approach,immortalizing early adult erythroblasts generating a stable line,which provides a continuous supply of red cells. The immortalized cells differentiate efficiently into mature,functional reticulocytes that can be isolated by filtration. Extensive characterization has not revealed any differences between these reticulocytes and in vitro-cultured adult reticulocytes functionally or at the molecular level,and importantly no aberrant protein expression. We demonstrate a feasible approach to the manufacture of red cells for clinical use from in vitro culture.
View Publication
文献
X. Liu et al. ( 2017)
International journal of biological sciences 13 2 232--244
Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis.
Background: Local ischemia is the main pathological performance in osteonecrosis of the femoral head (ONFH). There is currently no effective therapy to promote angiogenesis in the femoral head. Recent studies revealed that exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSC-Exos) have great therapeutic potential in ischemic tissues,but whether they could promote angiogenesis in ONFH has not been reported,and little is known regarding the underlying mechanism. Methods: iPS-MSC-Exos were intravenously injected to a steroid-induced rat osteonecrosis model. Samples of the femoral head were obtained 3 weeks after all the injections. The effects were assessed by measuring local angiogenesis and bone loss through histological and immunohistochemical (IHC) staining,micro-CT and three-dimensional microangiography. The effects of exosomes on endothelial cells were studied through evaluations of proliferation,migration and tube-forming analyses. The expression levels of angiogenic related PI3K/Akt signaling pathway of endothelial cells were evaluated following stimulation of iPS-MSC-Exos. The promoting effects of exosomes were re-evaluated following blockade of PI3K/Akt. Results: The in vivo study revealed that administration of iPS-MSC-Exos significantly prevented bone loss,and increased microvessel density in the femoral head compared with control group. We found that iPS-MSC-Exos significantly enhanced the proliferation,migration and tube-forming capacities of endothelial cells in vitro. iPS-MSC-Exos could activate PI3K/Akt signaling pathway in endothelial cells. Moreover,the promoting effects of iPS-MSC-Exos were abolished after blockade of PI3K/Akt on endothelial cells. Conclusions: Our findings suggest that transplantation of iPS-MSC-Exos exerts a preventative effect on ONFH by promoting local angiogenesis and preventing bone loss. The promoting effect might be attributed to activation of the PI3K/Akt signaling pathway on endothelial cells. The data provide the first evidence for the potential of iPS-MSC-Exos in treating ONFH.
View Publication
文献
J. Shao et al. (FEB 2017)
Scientific reports 7 42363
Experimental Study of the Biological Properties of Human Embryonic Stem Cell-Derived Retinal Progenitor Cells.
Retinal degenerative diseases are among the leading causes of blindness worldwide,and cell replacement is considered as a promising therapeutic. However,the resources of seed cells are scarce. To further explore this type of therapy,we adopted a culture system that could harvest a substantial quantity of retinal progenitor cells (RPCs) from human embryonic stem cells (hESCs) within a relatively short period of time. Furthermore,we transplanted these RPCs into the subretinal spaces of Royal College of Surgeons (RCS) rats. We quantified the thickness of the treated rats' outer nuclear layers (ONLs) and explored the visual function via electroretinography (ERG). It was found that the differentiated cells expressed RPC markers and photoreceptor progenitor markers. The transplanted RPCs survived for at least 12 weeks,resulting in beneficial effects on the morphology of the host retina,and led to a significant improvement in the visual function of the treated animals. These therapeutic effects suggest that the hESCs-derived RPCs could delay degeneration of the retina and partially restore visual function.
View Publication
文献
W. Zhu et al. (FEB 2017)
Journal of visualized experiments : JoVE 120
Pluripotent Stem Cell Derived Cardiac Cells for Myocardial Repair.
Human induced pluripotent stem cells (hiPSCs) must be fully differentiated into specific cell types before administration,but conventional protocols for differentiating hiPSCs into cardiomyocytes (hiPSC-CMs),endothelial cells (hiPSC-ECs),and smooth muscle cells (SMCs) are often limited by low yield,purity,and/or poor phenotypic stability. Here,we present novel protocols for generating hiPSC-CMs,-ECs,and -SMCs that are substantially more efficient than conventional methods,as well as a method for combining cell injection with a cytokine-containing patch created over the site of administration. The patch improves both the retention of the injected cells,by sealing the needle track to prevent the cells from being squeezed out of the myocardium,and cell survival,by releasing insulin-like growth factor (IGF) over an extended period. In a swine model of myocardial ischemia-reperfusion injury,the rate of engraftment was more than two-fold greater when the cells were administered with the cytokine-containing patch comparing to the cells without patch,and treatment with both the cells and the patch,but not with the cells alone,was associated with significant improvements in cardiac function and infarct size.
View Publication
文献
H. Xi et al. (FEB 2017)
Cell reports 18 6 1573--1585
In Vivo Human Somitogenesis Guides Somite Development from hPSCs.
Somites form during embryonic development and give rise to unique cell and tissue types,such as skeletal muscles and bones and cartilage of the vertebrae. Using somitogenesis-stage human embryos,we performed transcriptomic profiling of human presomitic mesoderm as well as nascent and developed somites. In addition to conserved pathways such as WNT-$\beta$-catenin,we also identified BMP and transforming growth factor $\beta$ (TGF-$\beta$) signaling as major regulators unique to human somitogenesis. This information enabled us to develop an efficient protocol to derive somite cells in vitro from human pluripotent stem cells (hPSCs). Importantly,the in-vitro-differentiating cells progressively expressed markers of the distinct developmental stages that are known to occur during in vivo somitogenesis. Furthermore,when subjected to lineage-specific differentiation conditions,the hPSC-derived somite cells were multipotent in generating somite derivatives,including skeletal myocytes,osteocytes,and chondrocytes. This work improves our understanding of human somitogenesis and may enhance our ability to treat diseases affecting somite derivatives.
View Publication
文献
N. Arora et al. (MAR 2017)
Development (Cambridge,England) 144 6 1128--1136
A process engineering approach to increase organoid yield.
Temporal manipulation of the in vitro environment and growth factors can direct differentiation of human pluripotent stem cells into organoids - aggregates with multiple tissue-specific cell types and three-dimensional structure mimicking native organs. A mechanistic understanding of early organoid formation is essential for improving the robustness of these methods,which is necessary prior to use in drug development and regenerative medicine. We investigated intestinal organoid emergence,focusing on measurable parameters of hindgut spheroids,the intermediate step between definitive endoderm and mature organoids. We found that 13{\%} of spheroids were pre-organoids that matured into intestinal organoids. Spheroids varied by several structural parameters: cell number,diameter and morphology. Hypothesizing that diameter and the morphological feature of an inner mass were key parameters for spheroid maturation,we sorted spheroids using an automated micropipette aspiration and release system and monitored the cultures for organoid formation. We discovered that populations of spheroids with a diameter greater than 75 $\mu$m and an inner mass are enriched 1.5- and 3.8-fold for pre-organoids,respectively,thus providing rational guidelines towards establishing a robust protocol for high quality intestinal organoids.
View Publication
文献
L. Chicaybam et al. ( 2016)
Frontiers in bioengineering and biotechnology 4 99
An Efficient Electroporation Protocol for the Genetic Modification of Mammalian Cells.
Genetic modification of cell lines and primary cells is an expensive and cumbersome approach,often involving the use of viral vectors. Electroporation using square-wave generating devices,like Lonza's Nucleofector,is a widely used option,but the costs associated with the acquisition of electroporation kits and the transient transgene expression might hamper the utility of this methodology. In the present work,we show that our in-house developed buffers,termed Chicabuffers,can be efficiently used to electroporate cell lines and primary cells from murine and human origin. Using the Nucleofector II device,we electroporated 14 different cell lines and also primary cells,like mesenchymal stem cells and cord blood CD34+,providing optimized protocols for each of them. Moreover,when combined with sleeping beauty-based transposon system,long-term transgene expression could be achieved in all types of cells tested. Transgene expression was stable and did not interfere with CD34+ differentiation to committed progenitors. We also show that these buffers can be used in CRISPR-mediated editing of PDCD1 gene locus in 293T and human peripheral blood mononuclear cells. The optimized protocols reported in this study provide a suitable and cost-effective platform for the genetic modification of cells,facilitating the widespread adoption of this technology.
View Publication
文献
J. S. Saini et al. (MAY 2017)
Cell stem cell 20 5 635--647.e7
Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration.
Age-related macular degeneration (AMD) affects the retinal pigment epithelium (RPE),a cell monolayer essential for photoreceptor survival,and is the leading cause of vision loss in the elderly. There are no disease-altering therapies for dry AMD,which is characterized by accumulation of subretinal drusen deposits and complement-driven inflammation. We report the derivation of human-induced pluripotent stem cells (hiPSCs) from patients with diagnosed AMD,including two donors with the rare ARMS2/HTRA1 homozygous genotype. The hiPSC-derived RPE cells produce several AMD/drusen-related proteins,and those from the AMD donors show significantly increased complement and inflammatory factors,which are most exaggerated in the ARMS2/HTRA1 lines. Using a panel of AMD biomarkers and candidate drug screening,combined with transcriptome analysis,we discover that nicotinamide (NAM) ameliorated disease-related phenotypes by inhibiting drusen proteins and inflammatory and complement factors while upregulating nucleosome,ribosome,and chromatin-modifying genes. Thus,targeting NAM-regulated pathways is a promising avenue for developing therapeutics to combat AMD.
View Publication
文献
J. W. Foster et al. (JAN 2017)
Scientific reports 7 41286
Cornea organoids from human induced pluripotent stem cells.
The cornea is the transparent outermost surface of the eye,consisting of a stratified epithelium,a collagenous stroma and an innermost single-cell layered endothelium and providing 2/3 of the refractive power of the eye. Multiple diseases of the cornea arise from genetic defects where the ultimate phenotype can be influenced by cross talk between the cell types and the extracellular matrix. Cell culture modeling of diseases can benefit from cornea organoids that include multiple corneal cell types and extracellular matrices. Here we present human iPS cell-derived organoids through sequential rounds of differentiation programs. These organoids share features of the developing cornea,harboring three distinct cell types with expression of key epithelial,stromal and endothelial cell markers. Cornea organoid cultures provide a powerful 3D model system for investigating corneal developmental processes and their disruptions in diseased conditions.
View Publication
文献
S. Dhakal et al. ( 2017)
Vaccine 35 8 1124--1131
Polyanhydride nanovaccine against swine influenza virus in pigs.
We have recently demonstrated the effectiveness of an influenza A virus (IAV) subunit vaccine based on biodegradable polyanhydride nanoparticles delivery in mice. In the present study,we evaluated the efficacy of ∼200nm polyanhydride nanoparticles encapsulating inactivated swine influenza A virus (SwIAV) as a vaccine to induce protective immunity against a heterologous IAV challenge in pigs. Nursery pigs were vaccinated intranasally twice with inactivated SwIAV H1N2 (KAg) or polyanhydride nanoparticle-encapsulated KAg (KAg nanovaccine),and efficacy was evaluated against a heterologous zoonotic virulent SwIAV H1N1 challenge. Pigs were monitored for fever daily. Local and systemic antibody responses,antigen-specific proliferation of peripheral blood mononuclear cells,gross and microscopic lung lesions,and virus load in the respiratory tract were compared among the groups of animals. Our pre-challenge results indicated that KAg nanovaccine induced virus-specific lymphocyte proliferation and increased the frequency of CD4+CD8$\alpha$$\alpha$+ T helper and CD8+ cytotoxic T cells in peripheral blood mononuclear cells. KAg nanovaccine-immunized pigs were protected from fever following SwIAV challenge. In addition,pigs immunized with the KAg nanovaccine presented with lower viral antigens in lung sections and had 6 to 8-fold reduction in nasal shedding of SwIAV four days post-challenge compared to control animals. Immunologically,increased IFN-$\gamma$ secreting T lymphocyte populations against both the vaccine and challenge viruses were detected in KAg nanovaccine-immunized pigs compared to the animals immunized with KAg alone. However,in the KAg nanovaccine-immunized pigs,hemagglutination inhibition,IgG and IgA antibody responses,and virus neutralization titers were comparable to that in the animals immunized with KAg alone. Overall,our data indicated that intranasal delivery of polyanhydride-based SwIAV nanovaccine augmented antigen-specific cellular immune response in pigs,with promise to induce cross-protective immunity.
View Publication
文献
J. E. Adair et al. ( 2016)
Nature communications 7 13173
Semi-automated closed system manufacturing of lentivirus gene-modified haematopoietic stem cells for gene therapy.
Haematopoietic stem cell (HSC) gene therapy has demonstrated potential to treat many diseases. However,current state of the art requires sophisticated ex vivo gene transfer in a dedicated Good Manufacturing Practices facility,limiting availability. An automated process would improve the availability and standardized manufacture of HSC gene therapy. Here,we develop a novel program for semi-automated cell isolation and culture equipment to permit complete benchtop generation of gene-modified CD34+ blood cell products for transplantation. These cell products meet current manufacturing quality standards for both mobilized leukapheresis and bone marrow,and reconstitute human haematopoiesis in immunocompromised mice. Importantly,nonhuman primate autologous gene-modified CD34+ cell products are capable of stable,polyclonal multilineage reconstitution with follow-up of more than 1 year. These data demonstrate proof of concept for point-of-care delivery of HSC gene therapy. Given the many target diseases for gene therapy,there is enormous potential for this approach to treat patients on a global scale.
View Publication