Ramakrishnan VM et al. (AUG 2015)
Scientific reports 5 13231
Restoration of Physiologically Responsive Low-Density Lipoprotein Receptor-Mediated Endocytosis in Genetically Deficient Induced Pluripotent Stem Cells.
Acquiring sufficient amounts of high-quality cells remains an impediment to cell-based therapies. Induced pluripotent stem cells (iPSC) may be an unparalleled source,but autologous iPSC likely retain deficiencies requiring correction. We present a strategy for restoring physiological function in genetically deficient iPSC utilizing the low-density lipoprotein receptor (LDLR) deficiency Familial Hypercholesterolemia (FH) as our model. FH fibroblasts were reprogrammed into iPSC using synthetic modified mRNA. FH-iPSC exhibited pluripotency and differentiated toward a hepatic lineage. To restore LDLR endocytosis,FH-iPSC were transfected with a 31 kb plasmid (pEHZ-LDLR-LDLR) containing a wild-type LDLR (FH-iPSC-LDLR) controlled by 10 kb of upstream genomic DNA as well as Epstein-Barr sequences (EBNA1 and oriP) for episomal retention and replication. After six months of selective culture,pEHZ-LDLR-LDLR was recovered from FH-iPSC-LDLR and transfected into Ldlr-deficient CHO-a7 cells,which then exhibited feedback-controlled LDLR-mediated endocytosis. To quantify endocytosis,FH-iPSC ± LDLR were differentiated into mesenchymal cells (MC),pretreated with excess free sterols,Lovastatin,or ethanol (control),and exposed to DiI-LDL. FH-MC-LDLR demonstrated a physiological response,with virtually no DiI-LDL internalization with excess sterols and an ˜2-fold increase in DiI-LDL internalization by Lovastatin compared to FH-MC. These findings demonstrate the feasibility of functionalizing genetically deficient iPSC using episomal plasmids to deliver physiologically responsive transgenes.
View Publication
文献
Yazdi PG et al. (AUG 2015)
PloS one 10 8 e0136314
Nucleosome Organization in Human Embryonic Stem Cells.
The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA,nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently,there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions,we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription�
View Publication
文献
Zhang P-WW et al. (JAN 2016)
Glia 64 1 63--75
Generation of GFAP::GFP astrocyte reporter lines from human adult fibroblast-derived iPS cells using zinc-finger nuclease technology.
Astrocytes are instrumental to major brain functions,including metabolic support,extracellular ion regulation,the shaping of excitatory signaling events and maintenance of synaptic glutamate homeostasis. Astrocyte dysfunction contributes to numerous developmental,psychiatric and neurodegenerative disorders. The generation of adult human fibroblast-derived induced pluripotent stem cells (iPSCs) has provided novel opportunities to study mechanisms of astrocyte dysfunction in human-derived cells. To overcome the difficulties of cell type heterogeneity during the differentiation process from iPSCs to astroglial cells (iPS astrocytes),we generated homogenous populations of iPS astrocytes using zinc-finger nuclease (ZFN) technology. Enhanced green fluorescent protein (eGFP) driven by the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter was inserted into the safe harbor adeno-associated virus integration site 1 (AAVS1) locus in disease and control-derived iPSCs. Astrocyte populations were enriched using Fluorescence Activated Cell Sorting (FACS) and after enrichment more than 99% of iPS astrocytes expressed mature astrocyte markers including GFAP,S100$\$,NFIA and ALDH1L1. In addition,mature pure GFP-iPS astrocytes exhibited a well-described functional astrocytic activity in vitro characterized by neuron-dependent regulation of glutamate transporters to regulate extracellular glutamate concentrations. Engraftment of GFP-iPS astrocytes into rat spinal cord grey matter confirmed in vivo cell survival and continued astrocytic maturation. In conclusion,the generation of GFAP::GFP-iPS astrocytes provides a powerful in vitro and in vivo tool for studying astrocyte biology and astrocyte-driven disease pathogenesis and therapy.
View Publication
文献
Choy DF et al. (AUG 2015)
Science translational medicine 7 301 301ra129
T H 2 and T H 17 inflammatory pathways are reciprocally regulated in asthma
Increasing evidence suggests that asthma is a heterogeneous disorder regulated by distinct molecular mechanisms. In a cross-sectional study of asthmatics of varying severity (n = 51),endobronchial tissue gene expression analysis revealed three major patient clusters: TH2-high,TH17-high,and TH2/17-low. TH2-high and TH17-high patterns were mutually exclusive in individual patient samples,and their gene signatures were inversely correlated and differentially regulated by interleukin-13 (IL-13) and IL-17A. To understand this dichotomous pattern of T helper 2 (TH2) and TH17 signatures,we investigated the potential of type 2 cytokine suppression in promoting TH17 responses in a preclinical model of allergen-induced asthma. Neutralization of IL-4 and/or IL-13 resulted in increased TH17 cells and neutrophilic inflammation in the lung. However,neutralization of IL-13 and IL-17 protected mice from eosinophilia,mucus hyperplasia,and airway hyperreactivity and abolished the neutrophilic inflammation,suggesting that combination therapies targeting both pathways may maximize therapeutic efficacy across a patient population comprising both TH2 and TH17 endotypes.
View Publication
Discovery and Structure Enabled Synthesis of 2,6-Diaminopyrimidin-4-one IRAK4 Inhibitors.
We report the identification and synthesis of a series of aminopyrimidin-4-one IRAK4 inhibitors. Through high throughput screening,an aminopyrimidine hit was identified and modified via structure enabled design to generate a new,potent,and kinase selective pyrimidin-4-one chemotype. This chemotype is exemplified by compound 16,which has potent IRAK4 inhibition activity (IC50 = 27 nM) and excellent kinase selectivity (textgreater100-fold against 99% of 111 tested kinases),and compound 31,which displays potent IRAK4 activity (IC50 = 93 nM) and good rat bioavailability (F = 42%).
View Publication
文献
Rodrí et al. (NOV 2015)
Journal of Virological Methods 224 1--8
Generation of monoclonal antibodies specific of the postfusion conformation of the Pneumovirinae fusion (F) protein
Paramyxovirus entry into cells requires fusion of the viral and cell membranes mediated by one of the major virus glycoproteins,the fusion (F) glycoprotein which transits from a metastable pre-fusion conformation to a highly stable post-fusion structure during the membrane fusion process. F protein refolding involves large conformational changes of the protein trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) from each protomer into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of the Pneumovirinae F proteins,and as extension of previous work (Palomo et al.,2014),a general strategy was designed to obtain polyclonal and particularly monoclonal antibodies specific of the 6HB motif of the Pneumovirinae fusion protein. The antibodies reported here should assist in the characterization of the structural changes that the F protein of human metapneumovirus or respiratory syncytial virus experiences during the process of membrane fusion.
View Publication
文献
Carmona-Mora P et al. (OCT 2015)
Human Genetics 134 10 1099--1115
The nuclear localization pattern and interaction partners of GTF2IRD1 demonstrate a role in chromatin regulation
GTF2IRD1 is one of the three members of the GTF2I gene family,clustered on chromosome 7 within a 1.8 Mb region that is prone to duplications and deletions in humans. Hemizygous deletions cause Williams-Beuren syndrome (WBS) and duplications cause WBS duplication syndrome. These copy number variations disturb a variety of developmental systems and neurological functions. Human mapping data and analyses of knockout mice show that GTF2IRD1 and GTF2I underpin the craniofacial abnormalities,mental retardation,visuospatial deficits and hypersociability of WBS. However,the cellular role of the GTF2IRD1 protein is poorly understood due to its very low abundance and a paucity of reagents. Here,for the first time,we show that endogenous GTF2IRD1 has a punctate pattern in the nuclei of cultured human cell lines and neurons. To probe the functional relationships of GTF2IRD1 in an unbiased manner,yeast two-hybrid libraries were screened,isolating 38 novel interaction partners,which were validated in mammalian cell lines. These relationships illustrate GTF2IRD1 function,as the isolated partners are mostly involved in chromatin modification and transcriptional regulation,whilst others indicate an unexpected role in connection with the primary cilium. Mapping of the sites of protein interaction also indicates key features regarding the evolution of the GTF2IRD1 protein. These data provide a visual and molecular basis for GTF2IRD1 nuclear function that will lead to an understanding of its role in brain,behaviour and human disease.
View Publication
文献
Kempf H et al. (SEP 2015)
Nature protocols 10 9 1345--1361
Cardiac differentiation of human pluripotent stem cells in scalable suspension culture.
Cardiomyocytes (CMs) generated from human pluripotent stem cells (hPSCs) are a potential cell source for regenerative therapies,drug discovery and disease modeling. All these applications require a routine supply of relatively large quantities of in vitro-generated CMs. This protocol describes a suspension culture-based strategy for the generation of hPSC-CMs as cell-only aggregates,which facilitates process development and scale-up. Aggregates are formed for 4 d in hPSC culture medium followed by 10 d of directed differentiation by applying chemical Wnt pathway modulators. The protocol is applicable to static multiwell formats supporting fast adaptation to specific hPSC line requirements. We also demonstrate how to apply the protocol using stirred tank bioreactors at a 100-ml scale,providing a well-controlled upscaling platform for CM production. In bioreactors,the generation of 40-50 million CMs per differentiation batch at textgreater80% purity without further lineage enrichment can been achieved within 24 d.
View Publication
文献
Pei Y et al. (MAY 2016)
Brain research 1638 Pt A 57--73
Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes.
Induced pluripotent stem cells (iPSC) and their differentiated derivatives offer a unique source of human primary cells for toxicity screens. Here,we report on the comparative cytotoxicity of 80 compounds (neurotoxicants,developmental neurotoxicants,and environmental compounds) in iPSC as well as isogenic iPSC-derived neural stem cells (NSC),neurons,and astrocytes. All compounds were tested over a 24-h period at 10 and 100$\$,in duplicate,with cytotoxicity measured using the MTT assay. Of the 80 compounds tested,50 induced significant cytotoxicity in at least one cell type; per cell type,32,38,46,and 41 induced significant cytotoxicity in iPSC,NSC,neurons,and astrocytes,respectively. Four compounds (valinomycin,3,3',5,5'-tetrabromobisphenol,deltamethrin,and triphenyl phosphate) were cytotoxic in all four cell types. Retesting these compounds at 1,10,and 100$\$ using the same exposure protocol yielded consistent results as compared with the primary screen. Using rotenone,we extended the testing to seven additional iPSC lines of both genders; no substantial difference in the extent of cytotoxicity was detected among the cell lines. Finally,the cytotoxicity assay was simplified by measuring luciferase activity using lineage-specific luciferase reporter iPSC lines which were generated from the parental iPSC line. This article is part of a Special Issue entitled SI: PSC and the brain.
View Publication
文献
Li X et al. (AUG 2015)
Cell stem cell 17 2 195--203
Small-Molecule-Driven Direct Reprogramming of Mouse Fibroblasts into Functional Neurons.
Recently,direct reprogramming between divergent lineages has been achieved by the introduction of regulatory transcription factors. This approach may provide alternative cell resources for drug discovery and regenerative medicine,but applications could be limited by the genetic manipulation involved. Here,we show that mouse fibroblasts can be directly converted into neuronal cells using only a cocktail of small molecules,with a yield of up to textgreater90% being TUJ1-positive after 16 days of induction. After a further maturation stage,these chemically induced neurons (CiNs) possessed neuron-specific expression patterns,generated action potentials,and formed functional synapses. Mechanistically,we found that a BET family bromodomain inhibitor,I-BET151,disrupted the fibroblast-specific program,while the neurogenesis inducer ISX9 was necessary to activate neuron-specific genes. Overall,our findings provide a proof of principle" for chemically induced direct reprogramming of somatic cell fates across germ layers without genetic manipulation�
View Publication
文献
Miere C et al. ( 2016)
Methods in molecular biology (Clifton,N.J.) 1357 33--44
Sendai Virus-Based Reprogramming of Mesenchymal Stromal/Stem Cells from Umbilical Cord Wharton's Jelly into Induced Pluripotent Stem Cells.
In an attempt to bring pluripotent stem cell biology closer to reaching its full potential,many groups have focused on improving reprogramming protocols over the past several years. The episomal modified Sendai virus-based vector has emerged as one of the most practical ones. Here we describe reprogramming of mesenchymal stromal/stem cells (MSC) derived from umbilical cord Wharton's Jelly into induced pluripotent stem cells (iPSC) using genome non-integrating Sendai virus-based vectors. The detailed protocols of iPSC colony cryopreservation (vitrification) and adaption to feeder-free culture conditions are also included.
View Publication
文献
Laperle A et al. (AUG 2015)
Stem cell reports 5 2 195--206
$\$-5 Laminin Synthesized by Human Pluripotent Stem Cells Promotes Self-Renewal.
Substrate composition significantly impacts human pluripotent stem cell (hPSC) self-renewal and differentiation,but relatively little is known about the role of endogenously produced extracellular matrix (ECM) components in regulating hPSC fates. Here we identify $\$-5 laminin as a signature ECM component endogenously synthesized by undifferentiated hPSCs cultured on defined substrates. Inducible shRNA knockdown and Cas9-mediated disruption of the LAMA5 gene dramatically reduced hPSC self-renewal and increased apoptosis without affecting the expression of pluripotency markers. Increased self-renewal and survival was restored to wild-type levels by culturing the LAMA5-deficient cells on exogenous laminin-521. Furthermore,treatment of LAMA5-deficient cells with blebbistatin or a ROCK inhibitor partially restored self-renewal and diminished apoptosis. These results demonstrate that endogenous $\$-5 laminin promotes hPSC self-renewal in an autocrine and paracrine manner. This finding has implications for understanding how stem cells dynamically regulate their microenvironment to promote self-renewal and provides guidance for efforts to design substrates for stem cell bioprocessing.
View Publication