Bao K et al. (OCT 2016)
Journal of immunology (Baltimore,Md. : 1950)
BATF Modulates the Th2 Locus Control Region and Regulates CD4+ T Cell Fate during Antihelminth Immunity.
The AP-1 factor basic leucine zipper transcription factor,ATF-like (BATF) is important for CD4(+) Th17,Th9,and follicular Th cell development. However,its precise role in Th2 differentiation and function remains unclear,and the requirement for BATF in nonallergic settings of type-2 immunity has not been explored. In this article,we show that,in response to parasitic helminths,Batf(-/-) mice are unable to generate follicular Th and Th2 cells. As a consequence,they fail to establish productive type-2 immunity during primary and secondary infection. Batf(-/-) CD4(+) T cells do not achieve type-2 cytokine competency,which implies that BATF plays a key role in the regulation of IL-4 and IL-13. In contrast to Th17 and Th9 cell subsets in which BATF binds directly to promoter and enhancer regions to regulate cytokine expression,our results show that BATF is significantly enriched at Rad50 hypersensitivity site (RHS)6 and RHS7 of the locus control region relative to AP-1 sites surrounding type-2 cytokine loci in Th2 cells. Indeed,Batf(-/-) CD4(+) T cells do not obtain permissive epigenetic modifications within the Th2 locus,which were linked to RHS6 and RHS7 function. In sum,these findings reveal BATF as a central modulator of peripheral and humoral hallmarks of type-2 immunity and begin to elucidate a novel mechanism by which it regulates type-2 cytokine production through its modification of the Th2 locus control region.
View Publication
文献
Naylor RW et al. ( 2016)
PloS one 11 10 e0165464
Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells.
Corneal diseases such as keratoconus represent a relatively common disorder in the human population. However,treatment is restricted to corneal transplantation,which only occurs in the most advanced cases. Cell based therapies may offer an alternative approach given that the eye is amenable to such treatments and corneal diseases like keratoconus have been associated specifically with the death of corneal keratocytes. The ability to generate corneal keratocytes in vitro may enable a cell-based therapy to treat patients with keratoconus. Human induced pluripotent stem cells (hiPSCs) offer an abundant supply of cells from which any cell in the body can be derived. In the present study,hiPSCs were successfully differentiated into neural crest cells (NCCs),the embryonic precursor to keratocytes,and then cultured on cadaveric corneal tissue to promote keratocyte differentiation. The hiPSC-derived NCCs were found to migrate into the corneal stroma where they acquired a keratocyte-like morphology and an expression profile similar to corneal keratocytes in vivo. These results indicate that hiPSCs can be used to generate corneal keratocytes in vitro and lay the foundation for using these cells in cornea cell-based therapies.
View Publication
文献
Mousa JJ et al. (OCT 2016)
Proceedings of the National Academy of Sciences of the United States of America Oct 17 201609449
Structural basis for nonneutralizing antibody competition at antigenic site II of the respiratory syncytial virus fusion protein.
Palivizumab was the first antiviral monoclonal antibody (mAb) approved for therapeutic use in humans,and remains a prophylactic treatment for infants at risk for severe disease because of respiratory syncytial virus (RSV). Palivizumab is an engineered humanized version of a murine mAb targeting antigenic site II of the RSV fusion (F) protein,a key target in vaccine development. There are limited reported naturally occurring human mAbs to site II; therefore,the structural basis for human antibody recognition of this major antigenic site is poorly understood. Here,we describe a nonneutralizing class of site II-specific mAbs that competed for binding with palivizumab to postfusion RSV F protein. We also describe two classes of site II-specific neutralizing mAbs,one of which escaped competition with nonneutralizing mAbs. An X-ray crystal structure of the neutralizing mAb 14N4 in complex with F protein showed that the binding angle at which human neutralizing mAbs interact with antigenic site II determines whether or not nonneutralizing antibodies compete with their binding. Fine-mapping studies determined that nonneutralizing mAbs that interfere with binding of neutralizing mAbs recognize site II with a pose that facilitates binding to an epitope containing F surface residues on a neighboring protomer. Neutralizing antibodies,like motavizumab and a new mAb designated 3J20 that escape interference by the inhibiting mAbs,avoid such contact by binding at an angle that is shifted away from the nonneutralizing site. Furthermore,binding to rationally and computationally designed site II helix-loop-helix epitope-scaffold vaccines distinguished neutralizing from nonneutralizing site II antibodies.
View Publication
文献
Varga E et al. (OCT 2016)
Stem cell research 17 3 531--533
Establishment of EHMT1 mutant induced pluripotent stem cell (iPSC) line from a 11-year-old Kleefstra syndrome (KS) patient with autism and normal intellectual performance.
Peripheral blood was collected from a clinically characterized female Kleefstra syndrome patient with a heterozygous,de novo,premature termination codon (PTC) mutation (NM024757.4(EHMT1):c.3413GtextgreaterA; p.Trp1138Ter). Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the human OSKM transcription factors using the Sendai-virus (SeV) delivery system. The pluripotency of transgene-free iPSC line was verified by the expression of pluripotency-associated markers and by in vitro spontaneous differentiation towards the 3 germ layers. Furthermore,the iPSC line showed normal karyotype. Our model might offer a good platform to study the pathomechanism of Kleefstra syndrome,also for drug testing,early biomarker discovery and gene therapy studies.
View Publication
文献
Varga E et al. (OCT 2016)
Stem cell research 17 3 514--516
Generation of human induced pluripotent stem cell (iPSC) line from an unaffected female carrier of Mucopolysaccharidosis type II (MPS II) disorder.
Peripheral blood was collected from a 39-year-old unaffected female carrier of an X-linked recessive mutation of Iduronate 2-sulfatase gene (NM000202.7(IDS):c.85CtextgreaterT) causing MPS II (OMIM 309900). Peripheral blood mononuclear cells (PBMCs) were reprogrammed by lentiviral delivery of a self-silencing hOKSM polycistronic vector. The pluripotency of iPSC line was confirmed by the expression of pluripotency-associated markers and in vitro spontaneous differentiation towards the 3 germ layers. The iPSC showed normal karyotype. The line offers a good platform to study MPS II pathophysiology,for drug testing,early biomarker discovery and gene therapy studies.
View Publication
文献
Varga E et al. (OCT 2016)
Stem cell research 17 3 482--484
Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 1-year-old male with pathogenic IDS mutation.
Peripheral blood was collected from a 1-year-old male patient with an X-linked recessive mutation of Iduronate 2-sulfatase (IDS) gene (NM000202.7(IDS):c.85CtextgreaterT) causing MPS II (OMIM 309900). Peripheral blood mononuclear cells (PBMCs) were reprogrammed by lentiviral delivery of a self-silencing hOKSM polycistronic vector. The pluripotency of the iPSC line was confirmed by the expression of pluripotency-associated markers and in vitro spontaneous differentiation towards the 3 germ layers. The iPSC line showed normal karyotype. The cell line offers a good platform to study MPS II pathophysiology,for drug testing,early biomarker discovery and gene therapy studies.
View Publication
文献
Kawasaki Y et al. (FEB 2017)
Arthritis & rheumatology (Hoboken,N.J.) 69 2 447--459
Identification of a High-Frequency Somatic NLRC4 Mutation as a Cause of Autoinflammation by Pluripotent Cell-Based Phenotype Dissection.
OBJECTIVE To elucidate the genetic background of a patient with neonatal-onset multisystem inflammatory disease (NOMID) with no NLRP3 mutation. METHODS A Japanese male child diagnosed as having NOMID was studied. The patient did not have any NLRP3 mutation,even as low-frequency mosaicism. We performed whole-exome sequencing on the patient and his parents. Induced pluripotent stem cells (iPSCs) were established from the patient's fibroblasts. The iPSCs were then differentiated into monocyte lineage to evaluate the cytokine profile. RESULTS We established multiple iPSC clones from a patient with NOMID and incidentally found that the phenotypes of monocytes from iPSC clones were heterogeneous and could be grouped into disease and normal phenotypes. Because each iPSC clone was derived from a single somatic cell,we hypothesized that the patient had somatic mosaicism of an interleukin-1β-related gene. Whole-exome sequencing of both representative iPSC clones and the patient's blood revealed a novel heterozygous NLRC4 mutation,p.T177A (c.529AtextgreaterG),as a specific mutation in diseased iPSC clones. Knockout of the NLRC4 gene using the clustered regularly interspaced short palindromic repeat/Cas9 system in a mutant iPSC clone abrogated the pathogenic phenotype. CONCLUSION Our findings indicate that the patient has somatic mosaicism of a novel NLRC4 mutation. To our knowledge,this is the first case showing that somatic mutation of NLRC4 causes autoinflammatory symptoms compatible with NOMID. The present study demonstrates the significance of prospective genetic screening combined with iPSC-based phenotype dissection for individualized diagnoses.
View Publication
A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells.
New genetic tools are needed to understand the functional interactions between HIV and human host factors in primary cells. We recently developed a method to edit the genome of primary CD4(+) T cells by electroporation of CRISPR/Cas9 ribonucleoproteins (RNPs). Here,we adapted this methodology to a high-throughput platform for the efficient,arrayed editing of candidate host factors. CXCR4 or CCR5 knockout cells generated with this method are resistant to HIV infection in a tropism-dependent manner,whereas knockout of LEDGF or TNPO3 results in a tropism-independent reduction in infection. CRISPR/Cas9 RNPs can furthermore edit multiple genes simultaneously,enabling studies of interactions among multiple host and viral factors. Finally,in an arrayed screen of 45 genes associated with HIV integrase,we identified several candidate dependency/restriction factors,demonstrating the power of this approach as a discovery platform. This technology should accelerate target validation for pharmaceutical and cell-based therapies to cure HIV infection.
View Publication
文献
Thoma EC et al. (OCT 2016)
Scientific reports 6 35830
Establishment of a translational endothelial cell model using directed differentiation of induced pluripotent stem cells from Cynomolgus monkey.
Due to their broad differentiation potential,pluripotent stem cells (PSCs) offer a promising approach for generating relevant cellular models for various applications. While human PSC-based cellular models are already advanced,similar systems for non-human primates (NHPs) are still lacking. However,as NHPs are the most appropriate animals for evaluating the safety of many novel pharmaceuticals,the availability of in vitro systems would be extremely useful to bridge the gap between cellular and animal models. Here,we present a NHP in vitro endothelial cell system using induced pluripotent stem cells (IPSCs) from Cynomolgus monkey (Macaca fascicularis). Based on an adapted protocol for human IPSCs,we directly differentiated macaque IPSCs into endothelial cells under chemically defined conditions. The resulting endothelial cells can be enriched using immuno-magnetic cell sorting and display endothelial marker expression and function. RNA sequencing revealed that the differentiation process closely resembled vasculogenesis. Moreover,we showed that endothelial cells derived from macaque and human IPSCs are highly similar with respect to gene expression patterns and key endothelial functions,such as inflammatory responses. These data demonstrate the power of IPSC differentiation technology to generate defined cell types for use as translational in vitro models to compare cell type-specific responses across species.
View Publication
文献
Zou Y et al. (FEB 2017)
Biogerontology 18 1 69--84
Telomere length is regulated by FGF-2 in human embryonic stem cells and affects the life span of its differentiated progenies.
The ability of human embryonic stem cells (hESCs) to proliferate indefinitely is attributed to its high telomerase activity and associated long telomere. However,factors regulating telomere length in hESCs remain largely uncharacterized. The aims of this study were,to identify factors which modulate telomere length of hESCs,and to determine if the telomere length of hESCs influences cellular senescence of its differentiated progeny cells. Telomerase reverse transcriptase (TERT) gene expression,telomerase activity and telomere length of hESCs cultured in different culture systems were compared. Genetically identical hESCs of different telomere lengths were differentiated into fibroblasts simultaneously,and the population doubling and cellular senescence levels were determined. We found that telomere lengths were significantly different in different culture systems and Fibroblast growth factor-2 (FGF-2) upregulated TERT expression,telomerase activity and telomere length via Wnt/β-catenin signaling pathway in hESCs in a significant manner. We also provide evidence that fibroblast differentiated from hESCs with longer telomere exhibited significant more population doublings and longer life span than those derived from hESCs with shorter telomeres. Thus,FGF-2 levels in hESCs culture systems can be manipulated to generate cells with longer telomere which would be advantageous in the applications of hESCs in regenerative medicine.
View Publication
文献
Massumi M et al. ( 2016)
PloS one 11 10 e0164457
An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells.
The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here,through the sequential in vitro targeting of selected signaling pathways,we have developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex,as an extracellular matrix,could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP,SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL,and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells,1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally,ES-DBCs were responsive to high glucose in static incubation and perifusion studies,and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion,targeting selected signaling pathways for 25-30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs,small molecules or genes that may have potential to influence beta-cell function.
View Publication
文献
Miranda C et al. (DEC 2016)
Biotechnology journal 11 12 1628--1638
Scaling up a chemically-defined aggregate-based suspension culture system for neural commitment of human pluripotent stem cells.
The demand of high cell numbers for applications in cellular therapies and drug screening requires the development of scalable platforms capable to generating highly pure populations of tissue-specific cells from human pluripotent stem cells. In this work,we describe the scaling-up of an aggregate-based culture system for neural induction of human induced pluripotent stem cells (hiPSCs) under chemically-defined conditions. A combination of non-enzymatic dissociation and rotary agitation was successfully used to produce homogeneous populations of hiPSC aggregates with an optimal (140 μm) and narrow distribution of diameters (coefficient of variation of 21.6%). Scalable neural commitment of hiPSCs as 3D aggregates was performed in 50 mL spinner flasks,and the process was optimized using a factorial design approach,involving parameters such as agitation rate and seeding density. We were able to produce neural progenitor cell cultures,that at the end of a 6-day neural induction process contained less than 3% of Oct4-positive cells and that,after replating,retained more than 60% of Pax6-positive neural cells. The results here presented should set the stage for the future generation of a clinically relevant number of human neural progenitors for transplantation and other biomedical applications using controlled,automated and reproducible large-scale bioreactor culture systems.
View Publication