Liu L et al. (OCT 2014)
Cell death & disease 5 10 e1471
Enrichment of c-Met+ tumorigenic stromal cells of giant cell tumor of bone and targeting by cabozantinib.
Giant cell tumor of bone (GCTB) is a very rare tumor entity,which is little examined owing to the lack of established cell lines and mouse models and the restriction of available primary cell lines. The stromal cells of GCTB have been made responsible for the aggressive growth and metastasis,emphasizing the presence of a cancer stem cell population. To identify and target such tumor-initiating cells,stromal cells were isolated from eight freshly resected GCTB tissues. Tumorigenic properties were examined by colony and spheroid formation,differentiation,migration,MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay,immunohistochemistry,antibody protein array,Alu in situ hybridization,FACS analysis and xenotransplantation into fertilized chicken eggs and mice. A sub-population of the neoplastic stromal cells formed spheroids and colonies,differentiated to osteoblasts,migrated to wounded regions and expressed the metastasis marker CXC-chemokine receptor type 4,indicating self-renewal,invasion and differentiation potential. Compared with adherent-growing cells,markers for pluripotency,stemness and cancer progression,including the CSC surface marker c-Met,were enhanced in spheroidal cells. This c-Met-enriched sub-population formed xenograft tumors in fertilized chicken eggs and mice. Cabozantinib,an inhibitor of c-Met in phase II trials,eliminated CSC features with a higher therapeutic effect than standard chemotherapy. This study identifies a c-Met(+) tumorigenic sub-population within stromal GCTB cells and suggests the c-Met inhibitor cabozantinib as a new therapeutic option for targeted elimination of unresectable or recurrent GCTB.
View Publication
文献
Li Z-H et al. (MAR 2014)
PLoS ONE 9 3 e91260
Nardosinone Improves the Proliferation, Migration and Selective Differentiation of Mouse Embryonic Neural Stem Cells
In this study,we investigated the impact of Nardosinone,a bioactive component in Nardostachys root,on the proliferation and differentiation of neural stem cells. The neural stem cells were isolated from cerebrums of embryonic day 14 CD1 mice. The proliferation of cells was monitored using the cell counting kit-8 assay,bromodeoxyuridine incorporation and cell cycle analysis. Cell migration and differentiation were investigated with the neurosphere assay and cell specific markers,respectively. The results showed that Nardosinone promotes cells proliferation and increases cells migration distance in a dose-dependent manner. Nardosinone also induces the selective differentiation of neural stem cells to neurons and oligodendrocytes,as indicated by the expression of microtubule-associated protein-2 and myelin basic protein,respectively. Nardosinone also increases the expression of phospho-extracellular signal-regulated kinase and phospho-cAMP response element binding protein during proliferation and differentiation. In conclusion,this study reveals the regulatory effects of Nardosinone on neural stem cells,which may have significant implications for the treatment of brain injury and neurodegenerative diseases.
View Publication
文献
Li Q et al. (AUG 2016)
Scientific reports 6 31915
Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels.
There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods,however,cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (˜50 days,10 passages tested,accumulative ˜>10(10)-fold expansion) with both high growth rate (˜20-fold expansion/7 days) and high volumetric yield (˜2.0%A-%10(7)%cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient,affordable glioblastoma TICs for drug discovery.
View Publication
文献
Li M et al. (MAR 2016)
Stem cell reports 6 3 396--410
EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy.
Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis,which is associated with cell autophagy. However,the mechanism by which autophagy regulates neurogenesis remains undefined. Here,we show that Eva1a/Tmem166,an autophagy-related gene,regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons,both in vivo and in vitro. Conversely,overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover,Eva1a depletion activated the PIK3CA-AKT axis,leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore,addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion,suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively,these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation.
View Publication
文献
Li A et al. (OCT 2015)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 29 10 4384--98
IFN-γ promotes τ phosphorylation without affecting mature tangles.
Inflammatory activation precedes and correlates with accumulating τ lesions in Alzheimer's disease and tauopathies. However,the relationship between neuroinflammation and etiology of pathologic τ remains elusive. To evaluate whether inflammatory signaling may promote or accelerate neurofibrillary tangle pathology,we explored the effect of recombinant adeno-associated virus (rAAV)-mediated overexpression of a master inflammatory cytokine,IFN-γ,on τ phosphorylation. In initial studies in primary neuroglial cultures,rAAV-mediated expression of IFN-γ did not alter endogenous τ production or paired helical filament τ phosphorylation. Next,we tested the effect of rAAV-mediated expression of IFN-γ in the brains of 2 mouse models of tauopathy: JNPL3 and rTg4510. In both models,IFN-γ increased 1) signal transducer and activator of transcription 1 levels and gliosis,and 2) hyperphosphorylation and conformational alterations of soluble τ compared with control cohorts. However,sarkosyl-insoluble phosphorylated τ levels and ubiquitin staining were unaltered in the IFN-γ cohorts. Notably,IFN-γ-induced τ hyperphosphorylation was associated with release of the inhibitory effect of glycogen synthase kinase 3β function by decreasing Ser9 phosphorylation. Our data suggest that type II IFN signaling can promote τ phosphorylation by modulating cellular kinase activity,though this is insufficient in accelerating neuritic tangle pathology.
View Publication
文献
Lerch JK et al. (MAR 2014)
Molecular and Cellular Neuroscience 59 97--105
cJun promotes CNS axon growth
A number of genes regulate regeneration of peripheral axons,but their ability to drive axon growth and regeneration in the central nervous system (CNS) remains largely untested. To address this question we overexpressed eight transcription factors and one small GTPase alone and in pairwise combinations to test whether combinatorial overexpression would have a synergistic impact on CNS neuron neurite growth. The Jun oncogene/signal transducer and activator of transcription 6 (JUN/STAT6) combination increased neurite growth in dissociated cortical neurons and in injured cortical slices. In injured cortical slices,JUN overexpression increased axon growth to a similar extent as JUN and STAT6 together. Interestingly,JUN overexpression was not associated with increased growth associated protein 43 (GAP43) or integrin alpha 7 (ITGA7) expression,though these are predicted transcriptional targets. This study demonstrates that JUN overexpression in cortical neurons stimulates axon growth,but does so independently of changes in expression of genes thought to be critical for JUNs effects on axon growth. We conclude that JUN activity underlies this CNS axonal growth response,and that it is mechanistically distinct from peripheral regeneration responses,in which increases in JUN expression coincide with increases in GAP43 expression.
View Publication
文献
Lee SJ et al. (DEC 2014)
Stem Cells and Development 23 23 2831--2840
Adult Stem Cells from the Hyaluronic Acid-Rich Node and Duct System Differentiate into Neuronal Cells and Repair Brain Injury
The existence of a hyaluronic acid-rich node and duct system (HAR-NDS) within the lymphatic and blood vessels was demonstrated previously. The HAR-NDS was enriched with small (3.0-5.0 μm in diameter),adult stem cells with properties similar to those of the very small embryonic-like stem cells (VSELs). Sca-1(+)Lin(-)CD45(-) cells were enriched approximately 100-fold in the intravascular HAR-NDS compared with the bone marrow. We named these adult stem cells node and duct stem cells (NDSCs)." NDSCs formed colonies on C2C12 feeder layers were positive for fetal alkaline phosphatase and could be subcultured on the feeder layers. NDSCs were Oct4(+)Nanog(+)SSEA-1(+)Sox2(+) while VSELs were Oct4(+)Nanog(+)SSEA-1(+)Sox2(-). NDSCs had higher sphere-forming efficiency and proliferative potential than VSELs and they were found to differentiate into neuronal cells in vitro. Injection of NDSCs into mice partially repaired ischemic brain damage. Thus we report the discovery of potential adult stem cells that may be involved in tissue regeneration. The intravascular HAR-NDS may serve as a route that delivers these stem cells to their target tissues.
View Publication
文献
Lee SB et al. (JAN 2016)
Nature 529 7585 172--7
An ID2-dependent mechanism for VHL inactivation in cancer.
Mechanisms that maintain cancer stem cells are crucial to tumour progression. The ID2 protein supports cancer hallmarks including the cancer stem cell state. HIFα transcription factors,most notably HIF2α (also known as EPAS1),are expressed in and required for maintenance of cancer stem cells (CSCs). However,the pathways that are engaged by ID2 or drive HIF2α accumulation in CSCs have remained unclear. Here we report that DYRK1A and DYRK1B kinases phosphorylate ID2 on threonine 27 (Thr27). Hypoxia downregulates this phosphorylation via inactivation of DYRK1A and DYRK1B. The activity of these kinases is stimulated in normoxia by the oxygen-sensing prolyl hydroxylase PHD1 (also known as EGLN2). ID2 binds to the VHL ubiquitin ligase complex,displaces VHL-associated Cullin 2,and impairs HIF2α ubiquitylation and degradation. Phosphorylation of Thr27 of ID2 by DYRK1 blocks ID2-VHL interaction and preserves HIF2α ubiquitylation. In glioblastoma,ID2 positively modulates HIF2α activity. Conversely,elevated expression of DYRK1 phosphorylates Thr27 of ID2,leading to HIF2α destabilization,loss of glioma stemness,inhibition of tumour growth,and a more favourable outcome for patients with glioblastoma.
View Publication
文献
Lee K et al. (JAN 2013)
Neuron 77 1 99--114
Mossy Fiber-CA3 Synapses Mediate Homeostatic Plasticity in Mature Hippocampal Neurons
Network activity homeostatically alters synaptic efficacy to constrain neuronal output. However,it is unclear how such compensatory adaptations coexist with synaptic information storage,especially in established networks. Here,we report that in mature hippocampal neurons in vitro,network activity preferentially regulated excitatory synapses within the proximal dendrites of CA3 neurons. These homeostatic synapses exhibited morphological,functional,and molecular signatures of the specialized contacts between mossy fibers of dentate granule cells and thorny excrescences (TEs) of CA3 pyramidal neurons. In vivo TEs were also selectively and bidirectionally altered by chronic activity changes. TE formation required presynaptic synaptoporin and was suppressed by the activity-inducible kinase,Plk2. These results implicate the mossy fiber-TE synapse as an independently tunable gain control locus that permits efficacious homeostatic adjustment of mossy fiber-CA3 synapses,while preserving synaptic weights that may encode information elsewhere within the mature hippocampal circuit.
View Publication
文献
Leal G et al. (OCT 2014)
PLoS ONE 9 10 e108175
Neuronal Activity Induces Synaptic Delivery of hnRNP A2/B1 by a BDNF-Dependent Mechanism in Cultured Hippocampal Neurons
Dendritic protein synthesis plays a critical role in several forms of synaptic plasticity,including BDNF (brain-derived neurotrophic factor)-mediated long-term synaptic potentiation (LTP). Dendritic transcripts are typically transported in a repressed state as components of large ribonucleoprotein complexes,and then translated upon stimulation at,or in the vicinity,of activated synapses. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is a trans-acting factor involved in dendritic mRNA trafficking,but how the distribution of the protein in dendrites is regulated has not been characterized. Here we found that a fraction of hnRNP A2/B1 is present at the synapse under resting conditions in cultured hippocampal neurons. Accordingly,this ribonucleoprotein was detected in free mRNP,monosomal,and polyribosomal fractions obtained from synaptoneurosomes. Neuronal activity and BDNF treatment increased hnRNP A2/B1 protein levels in the cell body and dendritic compartments,and induced the delivery of this protein to synaptic sites. The activity-dependent accumulation of hnRNP A2/B1 at the synapse required,at least in part,the activation of TrkB receptors,presumably by BDNF. This neurotrophin also upregulated the hnRNP A2/B1 mRNA in the soma but was without effect on the abundance of neuritic hnRNP A2/B1 transcripts. These results show that the distribution of hnRNP A2/B1 is regulated by BDNF and by neuronal activity,an effect that may have a role in BDNF-induced synaptic plasticity events.
View Publication
文献
Lazzaroni F et al. (NOV 2016)
Scientific reports 6 37201
Intronless WNT10B-short variant underlies new recurrent allele-specific rearrangement in acute myeloid leukaemia.
Defects in the control of Wnt signaling have emerged as a recurrent mechanism involved in cancer pathogenesis and acute myeloid leukaemia (AML),including the hematopoietic regeneration-associated WNT10B in AC133bright leukaemia cells,although the existence of a specific mechanism remains unproven. We have obtained evidences for a recurrent rearrangement,which involved the WNT10B locus (WNT10BR) within intron 1 (IVS1) and flanked at the 5' by non-human sequences whose origin remains to be elucidated; it also expressed a transcript variant (WNT10BIVS1) which was mainly detected in a cohort of patients with intermediate/unfavorable risk AML. We also identified in two separate cases,affected by AML and breast cancer respectively,a genomic transposable short form of human WNT10B (ht-WNT10B). The intronless ht-WNT10B resembles a long non-coding RNA (lncRNA),which suggests its involvement in a non-random microhomology-mediated recombination generating the rearranged WNT10BR. Furthermore,our studies supports an autocrine activation primed by the formation of WNT10B-FZD4/5 complexes in the breast cancer MCF7 cells that express the WNT10BIVS1. Chemical interference of WNT-ligands production by the porcupine inhibitor IWP-2 achieved a dose-dependent suppression of the WNT10B-FZD4/5 interactions. These results present the first evidence for a recurrent rearrangement promoted by a mobile ht-WNT10B oncogene,as a relevant mechanism for Wnt involvement in human cancer.
View Publication
文献
Lavasani M et al. (APR 2014)
The Journal of clinical investigation 124 4 1745--56
Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration.
Peripheral nerve injuries and neuropathies lead to profound functional deficits. Here,we have demonstrated that muscle-derived stem/progenitor cells (MDSPCs) isolated from adult human skeletal muscle (hMDSPCs) can adopt neuronal and glial phenotypes in vitro and ameliorate a critical-sized sciatic nerve injury and its associated defects in a murine model. Transplanted hMDSPCs surrounded the axonal growth cone,while hMDSPCs infiltrating the regenerating nerve differentiated into myelinating Schwann cells. Engraftment of hMDSPCs into the area of the damaged nerve promoted axonal regeneration,which led to functional recovery as measured by sustained gait improvement. Furthermore,no adverse effects were observed in these animals up to 18 months after transplantation. Following hMDSPC therapy,gastrocnemius muscles from mice exhibited substantially less muscle atrophy,an increase in muscle mass after denervation,and reorganization of motor endplates at the postsynaptic sites compared with those from PBS-treated mice. Evaluation of nerve defects in animals transplanted with vehicle-only or myoblast-like cells did not reveal histological or functional recovery. These data demonstrate the efficacy of hMDSPC-based therapy for peripheral nerve injury and suggest that hMDSPC transplantation has potential to be translated for use in human neuropathies.
View Publication