J. Bruminhent et al. (nov 2022)
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 22 11 2651--2660
An additional dose of viral vector COVID-19 vaccine and mRNA COVID-19 vaccine in kidney transplant recipients: A randomized controlled trial (CVIM 4 study).
Immunogenicity following an additional dose of Coronavirus disease 2019 (COVID-19) vaccine was investigated in an extended primary series among kidney transplant (KT) recipients. Eighty-five KT participants were randomized to receive either an mRNA (M group; n =??43) or viral vector (V group; n =??42) vaccine. Among them,62% were male,with a median (IQR) age of 50 (43-59) years and post-transplantation duration of 46 (26-82) months. At 2??weeks post-additional dose,there was no difference in the seroconversion rate between the M and V groups (70% vs. 65%,p =??.63). A median (IQR) of anti-RBD antibody level was not statistically different between the M group compared with the V group (51.8 [5.1-591] vs. 28.5 [2.9-119.3] BAU/ml,p =??.18). Furthermore,the percentage of participants with positive SARS-CoV-2 surrogate virus neutralization test results was not statistically different between groups (20% vs. 15%,p =??.40). S1-specific T cell and RBD-specific B cell responses were also comparable between the M and V groups (230 [41-420] vs. 268 [118-510],p =??.65 and 2 [0-10] vs. 2 [0-13] spot-forming units/106 peripheral blood mononuclear cells,p =??.60). In conclusion,compared with an additional dose of viral vector COVID-19 vaccine,a dose of mRNA COVID-19 vaccine did not elicit significantly different responses in KT recipients,regarding either humoral or cell-mediated immunity. (TCTR20211102003).
View Publication
文献
C. Liu et al. (jul 2022)
Scientific reports 12 1 12068
Validation and promise of a TCR mimic antibody for cancer immunotherapy of hepatocellular carcinoma.
Monoclonal antibodies are at the vanguard of the most promising cancer treatments. Whereas traditional therapeutic antibodies have been limited to extracellular antigens,T cell receptor mimic (TCRm) antibodies can target intracellular antigens presented by cell surface major histocompatibility complex (MHC) proteins. TCRm antibodies can therefore target a repertoire of otherwise undruggable cancer antigens. However,the consequences of off-target peptide/MHC recognition with engineered T cell therapies are severe,and thus there are significant safety concerns with TCRm antibodies. Here we explored the specificity and safety profile of a new TCRm-based T cell therapy for hepatocellular carcinoma (HCC),a solid tumor for which no effective treatment exists. We targeted an alpha-fetoprotein peptide presented by HLA-A*02 with a highly specific TCRm,which crystallographic structural analysis showed binds directly over the HLA protein and interfaces with the full length of the peptide. We fused the TCRm to the ? and ? subunits of a TCR,producing a signaling AbTCR construct. This was combined with an scFv/CD28 co-stimulatory molecule targeting glypican-3 for increased efficacy towards tumor cells. This AbTC + co-stimulatory T cell therapy showed potent activity against AFP-positive cancer cell lines in vitro and an in an in vivo model and undetectable activity against AFP-negative cells. In an in-human safety assessment,no significant adverse events or cytokine release syndrome were observed and evidence of efficacy was seen. Remarkably,one patient with metastatic HCC achieved a complete remission after nine months and ultimately qualified for a liver transplant.
View Publication
文献
I. D. Ferguson et al. (jul 2022)
Nature communications 13 1 4121
The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance.
The myeloma surface proteome (surfaceome) determines tumor interaction with the microenvironment and serves as an emerging arena for therapeutic development. Here,we use glycoprotein capture proteomics to define the myeloma surfaceome at baseline,in drug resistance,and in response to acute drug treatment. We provide a scoring system for surface antigens and identify CCR10 as a promising target in this disease expressed widely on malignant plasma cells. We engineer proof-of-principle chimeric antigen receptor (CAR) T-cells targeting CCR10 using its natural ligand CCL27. In myeloma models we identify proteins that could serve as markers of resistance to bortezomib and lenalidomide,including CD53,CD10,EVI2B,and CD33. We find that acute lenalidomide treatment increases activity of MUC1-targeting CAR-T cells through antigen upregulation. Finally,we develop a miniaturized surface proteomic protocol for profiling primary plasma cell samples with low inputs. These approaches and datasets may contribute to the biological,therapeutic,and diagnostic understanding of myeloma.
View Publication
文献
R. Bignold et al. (jul 2022)
Respiratory research 23 1 183
Chemokine CXCL12 drives pericyte accumulation and airway remodeling in allergic airway disease.
BACKGROUND Airway remodeling is a significant contributor to impaired lung function in chronic allergic airway disease. Currently,no therapy exists that is capable of targeting these structural changes and the consequent loss of function. In the context of chronic allergic inflammation,pericytes have been shown to uncouple from the pulmonary microvasculature,migrate to areas of inflammation,and significantly contribute to airway wall remodeling and lung dysfunction. This study aimed to elucidate the mechanism by which pulmonary pericytes accumulate in the airway wall in a model of chronic allergic airway inflammation. METHODS Mice were subjected to a protocol of chronic airway inflammation driven by the common environmental aeroallergen house dust mite. Phenotypic changes to lung pericytes were assessed by flow cytometry and immunostaining,and the functional capacity of these cells was evaluated using in vitro migration assays. The molecular mechanisms driving these processes were targeted pharmacologically in vivo and in vitro. RESULTS Pericytes demonstrated increased CXCR4 expression in response to chronic allergic inflammation and migrated more readily to its cognate chemokine,CXCL12. This increase in migratory capacity was accompanied by pericyte accumulation in the airway wall,increased smooth muscle thickness,and symptoms of respiratory distress. Pericyte uncoupling from pulmonary vessels and subsequent migration to the airway wall were abrogated following topical treatment with the CXCL12 neutraligand LIT-927. CONCLUSION These results provide new insight into the role of the CXCL12/CXCR4 signaling axis in promoting pulmonary pericyte accumulation and airway remodeling and validate a novel target to address tissue remodeling associated with chronic inflammation.
View Publication
文献
T. Kwok et al. ( 2022)
Frontiers in aging 3 838943
Age-Associated Changes to Lymph Node Fibroblastic Reticular Cells.
The decreased proportion of antigen-inexperienced,na{\{i}}ve T cells is a hallmark of aging in both humans and mice and contributes to reduced immune responses particularly against novel and re-emerging pathogens. Na{\"{i}}ve T cells depend on survival signals received during their circulation among the lymph nodes by direct contacts with stroma in particular fibroblastic reticular cells. Macroscopic changes to the architecture of the lymph nodes have been described but it is unclear how lymph node stroma are altered with age and whether these changes contribute to reduced na{\"{i}}ve T cell maintenance. Here using 2-photon microscopy we determined that the aged lymph node displayed increased fibrosis and correspondingly that na{\"{i}}ve T-cell motility was impaired in the aged lymph node especially in proximity to fibrotic deposition. Functionally adoptively transferred young na{\"{i}}ve T-cells exhibited reduced homeostatic turnover in aged hosts supporting the role of T cell-extrinsic mechanisms that regulate their survival. Further we determined that early development of resident fibroblastic reticular cells was impaired which may correlate to the declining levels of na{\"{i}}ve T-cell homeostatic factors observed in aged lymph nodes. Thus our study addresses the controversy as to whether aging impacts the composition lymph node stroma and supports a model in which impaired differentiation of lymph node fibroblasts and increased fibrosis inhibits the interactions necessary for na{\"{i}}ve T cell homeostasis."
View Publication
文献
H. Huang et al. ( 2022)
Frontiers in immunology 13 911390
Modulation of T Cell Responses by Fucoidan to Inhibit Osteogenesis.
Fucoidan has sparked considerable interest in biomedical applications because of its inherent (bio)physicochemical characteristics,particularly immunomodulatory effects on macrophages,neutrophils,and natural killer cells. However,the effect of fucoidan on T cells and the following regulatory interaction on cellular function has not been reported. In this work,the effect of sterile fucoidan on the T-cell response and the subsequent modulation of osteogenesis is investigated. The physicochemical features of fucoidan treated by high-temperature autoclave sterilization are characterized by UV-visible spectroscopy,X-ray diffraction,Fourier transform infrared and nuclear magnetic resonance analysis. It is demonstrated that high-temperature autoclave treatment resulted in fucoidan depolymerization,with no change in its key bioactive groups. Further,sterile fucoidan promotes T cells proliferation and the proportion of differentiated T cells decreases with increasing concentration of fucoidan. In addition,the supernatant of T cells co-cultured with fucoidan greatly suppresses the osteogenic differentiation of MC3T3-E1 by downregulating the formation of alkaline phosphatase and calcium nodule compared with fucoidan. Therefore,our work offers new insight into the fucoidan-mediated T cell and osteoblast interplay.
View Publication
文献
S. Mishra et al. (apr 2022)
Bio-protocol 12 8 e4391
An Optimized Tat/Rev Induced Limiting Dilution Assay for the Characterization of HIV-1 Latent Reservoirs.
The administration of antiretroviral therapy (ART) leads to a rapid reduction in plasma viral load in HIV-1 seropositive subjects. However,when ART is suspended,the virus rebounds due to the presence of a latent viral reservoir. Several techniques have been developed to characterize this latent viral reservoir. Of the various assay formats available presently,the Tat/Rev induced limiting dilution assay (TILDA) offers the most robust and technically simple assay strategy. The TILDA formats reported thus far are limited by being selective to one or a few HIV-1 genetic subtypes,thus,restricting them from a broader level application. The novel TILDA,labelled as U-TILDA ('U' for universal),can detect all the major genetic subtypes of HIV-1 unbiasedly,and with comparable sensitivity of detection. U-TILDA is well suited to characterize the latent reservoirs of HIV-1 and aid in the formulation of cure strategies. Graphical abstract.
View Publication
文献
C. Jirabanditsakul et al. ( 2022)
Technology in cancer research & treatment 21 1.53E+16
Comparison of Clinical Characteristics and Genetic Aberrations of Plasma Cell Disorders in Thailand Population.
Multiple myeloma is an incurable malignancy of plasma cells resulting from impaired terminal B cell development. Almost all patients with multiple myeloma eventually have a relapse. Many studies have demonstrated the importance of the various genomic mutations that characterize multiple myeloma as a complex heterogeneous disease. In recent years,next-generation sequencing has been used to identify the genomic mutation landscape and clonal heterogeneity of multiple myeloma. This is the first study,a prospective observational study,to identify somatic mutations in plasma cell disorders in the Thai population using targeted next-generation sequencing. Twenty-seven patients with plasma cell disorders were enrolled comprising 17 cases of newly diagnosed multiple myeloma,5 cases of relapsed/refractory multiple myeloma,and 5 cases of other plasma cell disorders. The pathogenic mutations were found in 17 of 27 patients. Seventy percent of those who had a mutation (12/17 patients) habored a single mutation,whereas the others had more than one mutation. Fifteen pathogenic mutation genes were identified: ATM,BRAF,CYLD,DIS3,DNMT3A,FBXW7,FLT3,GNA13,IRF4,KMT2A,NRAS,SAMHD1,TENT5C,TP53,and TRAF3. Most have previously been reported to be involved in the RAS/MAPK pathway,the nuclear factor kappa B pathway,the DNA-repair pathway,the CRBN pathway,tumor suppressor gene mutation,or an epigenetic mutation. However,the current study also identified mutations that had not been reported to be related to myeloma: GNA13 and FBXW7. Therefore,a deep understanding of molecular genomics would inevitably improve the clinical management of plasma cell disorder patients,and the increased knowledge would ultimately result in better outcomes for the patients.
View Publication
文献
X. Wang et al. (jun 2022)
Journal of experimental & clinical cancer research : CR 41 1 210
Expanding anti-CD38 immunotherapy for lymphoid malignancies.
BACKGROUND Lymphoid neoplasms,including multiple myeloma (MM),non-Hodgkin lymphoma (NHL),and NK/T cell neoplasms,are a major cause of blood cancer morbidity and mortality. CD38 (cyclic ADP ribose hydrolase) is a transmembrane glycoprotein expressed on the surface of plasma cells and MM cells. The high expression of CD38 across MM and other lymphoid malignancies and its restricted expression in normal tissues make CD38 an attractive target for immunotherapy. CD38-targeting antibodies,like daratumumab,have been approved for the treatment of MM and tested against lymphoma and leukemia in multiple clinical trials. METHODS We generated chimeric antigen receptor (CAR) T cells targeting CD38 and tested its cytotoxicity against multiple CD38high and CD38low lymphoid cancer cells. We evaluated the synergistic effects of all-trans retinoic acid (ATRA) and CAR T cells or daratumumab against cancer cells and xenograft tumors. RESULTS CD38-CAR T cells dramatically inhibited the growth of CD38high MM,mantle cell lymphoma (MCL),Waldenstrom's macroglobulinemia (WM),T-cell acute lymphoblastic leukemia (T-ALL),and NK/T-cell lymphoma (NKTCL) in vitro and in mouse xenografts. ATRA elevated CD38 expression in multiple CD38low cancer cells and enhanced the anti-tumor activity of daratumumab and CD38-CAR T cells in xenograft tumors. CONCLUSIONS These findings may expand anti-CD38 immunotherapy to a broad spectrum of lymphoid malignancies and call for the incorporation of ATRA into daratumumab or other anti-CD38 immunological agents for cancer therapy.
View Publication
文献
J. H\ofle et al." (aug 2022)
EMBO reports 23 8 e54133
Engagement of TRAIL triggers degranulation and IFN$\gamma$ production in human natural killer cells.
NK cells utilize a large array of receptors to screen their surroundings for aberrant or virus-infected cells. Given the vast diversity of receptors expressed on NK cells we seek to identify receptors involved in the recognition of HIV-1-infected cells. By combining an unbiased large-scale screening approach with a functional assay,we identify TRAIL to be associated with NK cell degranulation against HIV-1-infected target cells. Further investigating the underlying mechanisms,we demonstrate that TRAIL is able to elicit multiple effector functions in human NK cells independent of receptor-mediated induction of apoptosis. Direct engagement of TRAIL not only results in degranulation but also IFN$\gamma$ production. Moreover,TRAIL-mediated NK cell activation is not limited to its cognate death receptors but also decoy receptor I,adding a new perspective to the perceived regulatory role of decoy receptors in TRAIL-mediated cytotoxicity. Based on these findings,we propose that TRAIL not only contributes to the anti-HIV-1 activity of NK cells but also possesses a multifunctional role beyond receptor-mediated induction of apoptosis,acting as a regulator for the induction of different effector functions.
View Publication
文献
V. K. Singh et al. ( 2022)
Frontiers in immunology 13 865503
Antibody-Mediated LILRB2-Receptor Antagonism Induces Human Myeloid-Derived Suppressor Cells to Kill Mycobacterium tuberculosis.
Tuberculosis is a leading cause of death in mankind due to infectious agents,and Mycobacterium tuberculosis (Mtb) infects and survives in macrophages (MФs). Although MФs are a major niche,myeloid-derived suppressor cells (MDSCs) are an alternative site for pathogen persistence. Both MФs and MDSCs express varying levels of leukocyte immunoglobulin-like receptor B (LILRB),which regulate the myeloid cell suppressive function. Herein,we demonstrate that antagonism of LILRB2 by a monoclonal antibody (mab) induced a switch of human MDSCs towards an M1-macrophage phenotype,increasing the killing of intracellular Mtb. Mab-mediated antagonism of LILRB2 alone and its combination with a pharmacological blockade of SHP1/2 phosphatase increased proinflammatory cytokine responses and phosphorylation of ERK1/2,p38 MAPK,and NF-kB in Mtb-infected MDSCs. LILRB2 antagonism also upregulated anti-mycobacterial iNOS gene expression and an increase in both nitric oxide and reactive oxygen species synthesis. Because genes associated with the anti-mycobacterial function of M1-MФs were enhanced in MDSCs following mab treatment,we propose that LILRB2 antagonism reprograms MDSCs from an immunosuppressive state towards a pro-inflammatory phenotype that kills Mtb. LILRB2 is therefore a novel therapeutic target for eradicating Mtb in MDSCs.
View Publication
文献
M. M. Waldman et al. ( 2022)
Frontiers in immunology 13 856977
Ena/VASP Protein-Mediated Actin Polymerization Contributes to Na\ive CD8+ T Cell Activation and Expansion by Promoting T Cell-APC Interactions In Vivo."
Na{\{i}}ve T cell activation in secondary lymphoid organs such as lymph nodes (LNs) occurs upon recognition of cognate antigen presented by antigen presenting cells (APCs). T cell activation requires cytoskeleton rearrangement and sustained interactions with APCs. Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are a family of cytoskeletal effector proteins responsible for actin polymerization and are frequently found at the leading edge of motile cells. Ena/VASP proteins have been implicated in motility and adhesion in various cell types but their role in primary T cell interstitial motility and activation has not been explored. Our goal was to determine the contribution of Ena/VASP proteins to T cell-APC interactions T cell activation and T cell expansion in vivo. Our results showed that na{\"{i}}ve T cells from Ena/VASP-deficient mice have a significant reduction in antigen-specific T cell accumulation following Listeria monocytogenes infection. The kinetics of T cell expansion impairment were further confirmed in Ena/VASP-deficient T cells stimulated via dendritic cell immunization. To investigate the cause of this T cell expansion defect we analyzed T cell-APC interactions in vivo by two-photon microscopy and observed fewer Ena/VASP-deficient na{\"{i}}ve T cells interacting with APCs in LNs during priming. We also determined that Ena/VASP-deficient T cells formed conjugates with significantly less actin polymerization at the T cell-APC synapse and that these conjugates were less stable than their WT counterparts. Finally we found that Ena/VASP-deficient T cells have less LFA-1 polarized to the T cell-APC synapse. Thus we conclude that Ena/VASP proteins contribute to T cell actin remodeling during T cell-APC interactions which promotes the initiation of stable T cell conjugates during APC scanning. Therefore Ena/VASP proteins are required for efficient activation and expansion of T cells in vivo."
View Publication