Iversen PO et al. (JAN 2002)
American journal of physiology. Regulatory,integrative and comparative physiology 282 1 R166--72
Decreased hematopoiesis in bone marrow of mice with congestive heart failure.
Patients with heart failure are predisposed to infections and anemia,possibly due to reduced hematopoiesis. The proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is increased in heart failure,and it inhibits normal hematopoiesis,partly due to apoptosis through the effector molecule Fas. We examined bone marrow progenitor cells of mice with heart failure induced by acute myocardial infarction. The fraction of progenitor cells in mice with heart failure was only approximately 40% of control. Measured with in vitro clonal assays,the proliferative capacity of the progenitor cells in mice with heart failure was reduced to approximately 50% of control. Flow cytometry with specific markers revealed a threefold increase in apoptosis among progenitor cells from mice with heart failure. In these mice,TNF-alpha/Fas expression was increased in bone marrow natural killer (NK) and T cells,and these lymphocytes showed increased cytolytic activity in vitro against progenitor cells. We conclude that the TNF-alpha/Fas pathway in lymphocytes is activated in the bone marrow during heart failure,which may play a pathogenic role in the observed decrease in hematopoiesis.
View Publication
文献
Coata G et al. (JAN 2001)
Stem cells (Dayton,Ohio) 19 6 534--42
Prenatal diagnosis of genetic abnormalities using fetal CD34+ stem cells in maternal circulation and evidence they do not affect diagnosis in later pregnancies.
In the present study,we report a new method for enrichment and analysis of fetal CD34+ stem cells after culture in order to determine whether it is feasible for noninvasive prenatal diagnosis. We also determined whether fetal CD34+ stem cells persist in maternal blood after delivery and assessed whether they have an impact on noninvasive prenatal diagnosis of genetic abnormalities. Peripheral blood samples were obtained from 35 pregnant women,13 non-pregnant women who had given birth to male offsprings,12 women who had never been pregnant,and eight pregnant women with male fetuses. CD34+ stem cells were enriched and either cultured for prenatal diagnosis or analyzed with fluorescence in situ hybridization (FISH)/polymerase chain reaction (PCR) to determine peristance in maternal blood. Fetal/maternal cells can be isolated and grown in vitro" to provide enough cells for a more accurate fetal sex or aneuploid prediction than is provided by unenriched and uncultured CD34+ stem cells. The presence of fetal cells in maternal blood samples from mothers who had given birth to male offspring was found in 3 of 13 blood samples. PCR was positive for Y chromosome in one woman who had never been pregnant. Analysis of cultured CD34+ stem cells from mothers with Y PCR positivity did not detect any male cells in any samples. Even if PCR positivity is due to persistence of fetal stem cells from previous pregnancies�
View Publication
文献
Moreau-Gaudry F et al. (NOV 2001)
Blood 98 9 2664--72
High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors.
Use of oncoretroviral vectors in gene therapy for hemoglobinopathies has been impeded by low titer vectors,genetic instability,and poor expression. Fifteen self- inactivating (SIN) lentiviral vectors using 4 erythroid promoters in combination with 4 erythroid enhancers with or without the woodchuck hepatitis virus postregulatory element (WPRE) were generated using the enhanced green fluorescent protein as a reporter gene. Vectors with high erythroid-specific expression in cell lines were tested in primary human CD34(+) cells and in vivo in the murine bone marrow (BM) transplantation model. Vectors containing the ankyrin-1 promoter showed high-level expression and stable proviral transmission. Two vectors containing the ankyrin-1 promoter and 2 erythroid enhancers (HS-40 plus GATA-1 or HS-40 plus 5-aminolevulinate synthase intron 8 [I8] enhancers) and WPRE expressed at levels higher than the HS2/beta-promoter vector in bulk unilineage erythroid cultures and individual erythroid blast-forming units derived from human BM CD34(+) cells. Sca1(+)/lineage(-) Ly5.1 mouse hematopoietic cells,transduced with these 2 ankyrin-1 promoter vectors,were injected into lethally irradiated Ly5.2 recipients. Eleven weeks after transplantation,high-level expression was seen from both vectors in blood (63%-89% of red blood cells) and erythroid cells in BM (70%-86% engraftment),compared with negligible expression in myeloid and lymphoid lineages in blood,BM,spleen,and thymus (0%-4%). The I8/HS-40-containing vector encoding a hybrid human beta/gamma-globin gene led to 43% to 113% human gamma-globin expression/copy of the mouse alpha-globin gene. Thus,modular use of erythroid-specific enhancers/promoters and WPRE in SIN-lentiviral vectors led to identification of high-titer,stably transmitted vectors with high-level erythroid-specific expression for gene therapy of red cell diseases.
View Publication
文献
Jasinski M et al. (OCT 2001)
Blood 98 7 2248--55
GATA1-Cre mediates Piga gene inactivation in the erythroid/megakaryocytic lineage and leads to circulating red cells with a partial deficiency in glycosyl phosphatidylinositol-linked proteins (paroxysmal nocturnal hemoglobinuria type II cells).
Patients with paroxysmal nocturnal hemoglobinuria (PNH) have blood cells deficient in glycosyl phosphatidylinositol (GPI)-linked proteins owing to a somatic mutation in the X-linked PIGA gene. To target Piga recombination to the erythroid/megakaryocytic lineage in mice,the Cre/loxP system was used,and Cre was expressed under the transcriptional regulatory sequences of GATA-1. Breeding of GATA1-cre (G) transgenic mice with mice carrying a floxed Piga (L) allele was associated with high embryonic lethality. However,double-transgenic (GL) mice that escaped early recombination looked healthy and were observed for 16 months. Flow cytometric analysis of peripheral blood cells showed that GL mice had up to 100% of red cells deficient in GPI-linked proteins. The loss of GPI-linked proteins on the cell surface occurred late in erythroid differentiation,causing a proportion of red cells to express low residual levels of GPI-linked proteins. Red cells with residual expression of GPI-linked proteins showed an intermediate sensitivity toward complement and thus resemble PNH type II cells in patients with PNH. Recombination of the floxed Piga allele was also detected in cultured megakaryocytes,mast cells,and eosinophils,but not in neutrophils,lymphocytes,or nonhematopoietic tissues. In summary,GATA1-Cre causes high-efficiency Piga gene inactivation in a GATA-1-specific pattern. For the first time,mice were generated that have almost 100% of red cells deficient in GPI-linked proteins. These animals will be valuable to further investigate the consequences of GPI-anchor deficiency on erythroid/megakaryocytic cells.
View Publication
文献
Pfeifer A et al. (SEP 2001)
Proceedings of the National Academy of Sciences of the United States of America 98 20 11450--5
Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo.
The Cre recombinase (Cre) from bacteriophage P1 is an important tool for genetic engineering in mammalian cells. We constructed lentiviral vectors that efficiently deliver Cre in vitro and in vivo. Surprisingly,we found a significant reduction in proliferation and an accumulation in the G(2)/M phase of Cre-expressing cells. To minimize the toxic effect of Cre,we designed a lentiviral vector that integrates into the host genome,expresses Cre in the target cell,and is subsequently deleted from the genome in a Cre-dependent manner. Thus,the activity of Cre terminates its own expression (self-deleting). We showed efficient modification of target genes in vitro and in the brain after transduction with the self-deleting vectors. In contrast to sustained Cre expression,transient expression of Cre from the self-deleting vector induced significantly less cytotoxicity. Such a self-deleting Cre vector is a promising tool for the induction of conditional gene modifications with minimal Cre toxicity in vivo.
View Publication
文献
Osada H et al. (APR 2001)
Transfusion 41 4 499--503
Detection of fetal HPCs in maternal circulation after delivery.
BACKGROUND: Circulation of mature fetal blood cells in the maternal blood for a certain postpartum period has been verified,but detailed study of the fetal HPCs has not been reported. The objective of this study was to evaluate the frequency and clearance of these cells in the peripheral blood of puerperal women. STUDY DESIGN AND METHODS: PBMNCs from 15 puerperal women who gave birth to male infants were cultured in semi-solid medium containing hematopoietic stimulating factors. Colonies formed in the medium were individually characterized,collected,and subjected to PCR amplification of the SRY gene on Y chromosome to confirm fetal origin. RESULTS: The mean numbers of fetal progenitor cell colonies isolated per mL of maternal blood were 1.63,2.48,0.56,0.12,and 0 on the day of delivery,at 4 days,1 month,6 months,and 1 year after delivery,respectively. There was no difference in the ratio of fetal versus maternal colonies between erythroid and granulocyte/macrophage lineages. CONCLUSION: The present study demonstrated that a significant number of fetal HPCs circulate in the maternal blood for a duration of at least 6 months after delivery.
View Publication
文献
van den Oudenrijn S et al. (FEB 2001)
Journal of hematotherapy & stem cell research 10 1 193--200
Influence of medium components on ex vivo megakaryocyte expansion.
Reinfusion of ex vivo-expanded autologous megakaryocytes together with a stem cell transplantation may be useful to prevent or reduce the period of chemotherapy-induced thrombocytopenia. In this study,we analyzed several serum-containing and serum-free media to identify the most suitable medium for megakaryocyte expansion. Moreover,two thrombopoietin (Tpo)-mimetic peptides were tested to evaluate whether they could replace Tpo in an expansion protocol. To analyze the effects of different media on megakaryocyte expansion,we used an in vitro liquid culture system. For this purpose,CD34(+) cells were isolated from peripheral blood and cultured for 8 days in the presence of Tpo and interleukin-3 (IL-3). The presence of megakaryocytes was analyzed by flow cytometric analysis after staining for CD41 expression. For our standard culture procedure,megakaryocyte medium (MK medium) supplemented with 10% AB plasma was used. Addition of 5% or 2.5% AB plasma yielded higher numbers of megakaryocytes,implying the presence of inhibitory factors in plasma. However,some plasma components are required for optimal megakaryocyte expansion because addition of less than 1% AB plasma or addition of human serum albumin instead of AB plasma resulted in the formation of lower numbers of megakaryocytes. Two commercially available serum-free media were also tested: Cellgro and Stemspan. If CD34(+) cells were cultured in Cellgro medium similar numbers of megakaryocytes were obtained as when CD34(+) cells were cultured in MK medium supplemented with 10% AB plasma. In MK medium with 2.5% AB plasma,higher numbers of megakaryocytes were cultured than in MK medium supplemented with 10% AB plasma. Therefore,Cellgro medium is not the best alternative medium. In cultures with Stemspan medium,higher numbers of megakaryocytes were obtained compared to MK medium with 10% AB plasma. Stemspan is thus a good alternative for MK medium. Two Tpo-mimetic peptides,AF13948 and PK1M,were tested for their ability to replace Tpo. In cultures with AF13948,comparable numbers of megakaryocytes were obtained as in the presence of Tpo,but in cultures with PK1M the number of megakaryocytes was lower. This study shows that high concentrations of plasma in medium inhibits megakaryocyte formation,but some plasma components are required for optimal megakaryocyte expansion. For an ex vivo expansion protocol,it is worthwhile to test several media,because the number of megakaryocytes differs widely with the medium used.
View Publication
文献
Rosenzweig M et al. (APR 2001)
Blood 97 7 1951--9
Induction of cytotoxic T lymphocyte and antibody responses to enhanced green fluorescent protein following transplantation of transduced CD34(+) hematopoietic cells.
Genetic modification of hematopoietic stem cells often results in the expression of foreign proteins in pluripotent progenitor cells and their progeny. However,the potential for products of foreign genes introduced into hematopoietic stem cells to induce host immune responses is not well understood. Gene marking and induction of immune responses to enhanced green fluorescent protein (eGFP) were examined in rhesus macaques that underwent nonmyeloablative irradiation followed by infusions of CD34(+) bone marrow cells transduced with a retroviral vector expressing eGFP. CD34(+) cells were obtained from untreated animals or from animals treated with recombinant human granulocyte colony-stimulating factor (G-CSF) alone or G-CSF and recombinant human stem cell factor. Levels of eGFP-expressing cells detected by flow cytometry peaked at 0.1% to 0.5% of all leukocytes 1 to 4 weeks after transplantation. Proviral DNA was detected in 0% to 17% of bone marrow--derived colony-forming units at periods of 5 to 18 weeks after transplantation. However,5 of 6 animals studied demonstrated a vigorous eGFP-specific cytotoxic T lymphocyte (CTL) response that was associated with a loss of genetically modified cells in peripheral blood,as demonstrated by both flow cytometry and polymerase chain reaction. The eGFP-specific CTL responses were MHC-restricted,mediated by CD8(+) lymphocytes,and directed against multiple epitopes. eGFP-specific CTLs were able to efficiently lyse autologous CD34(+) cells expressing eGFP. Antibody responses to eGFP were detected in 3 of 6 animals. These data document the potential for foreign proteins expressed in CD34(+) hematopoietic cells and their progeny to induce antibody and CTL responses in the setting of a clinically applicable transplantation protocol. (Blood. 2001;97:1951-1959)
View Publication
文献
Geiger JN et al. (FEB 2001)
Blood 97 4 901--10
mDYRK3 kinase is expressed selectively in late erythroid progenitor cells and attenuates colony-forming unit-erythroid development.
DYRKs are a new subfamily of dual-specificity kinases that was originally discovered on the basis of homology to Yak1,an inhibitor of cell cycle progression in yeast. At present,mDYRK-3 and mDYRK-2 have been cloned,and mDYRK-3 has been characterized with respect to kinase activity,expression among tissues and hematopoietic cells,and possible function during erythropoiesis. In sequence,mDYRK-3 diverges markedly in noncatalytic domains from mDYRK-2 and mDYRK-1a,but is 91.3% identical overall to hDYRK-3. Catalytically,mDYRK-3 readily phosphorylated myelin basic protein (but not histone 2B) and also appeared to autophosphorylate in vitro. Expression of mDYRK-1a,mDYRK-2,and mDYRK-3 was high in testes,but unlike mDYRK1a and mDYRK 2,mDYRK-3 was not expressed at appreciable levels in other tissues examined. Among hematopoietic cells,however,mDYRK-3 expression was selectively elevated in erythroid cell lines and primary pro-erythroid cells. In developmentally synchronized erythroid progenitor cells,expression peaked sharply following exposure to erythropoietin plus stem cell factor (SCF) (but not SCF alone),and in situ hybridizations of sectioned embryos revealed selective expression of mDYRK-3 in fetal liver. Interestingly,antisense oligonucleotides to mDYRK-3 were shown to significantly and specifically enhance colony-forming unit-erythroid colony formation. Thus,it is proposed that mDYRK-3 kinase functions as a lineage-restricted,stage-specific suppressor of red cell development. (Blood. 2001;97:901-910)
View Publication
文献
Montecino-Rodriguez E et al. (JAN 2001)
Nature immunology 2 1 83--8
Bipotential B-macrophage progenitors are present in adult bone marrow.
According to the current model of adult hematopoiesis,differentiation of pluripotential hematopoietic stem cells into common myeloid- and lymphoid-committed progenitors establishes an early separation between the myeloid and lymphoid lineages. This report describes a rare and previously unidentified CD45R-CD19+ B cell progenitor population in postnatal bone marrow that can also generate macrophages. In addition to the definition of this B-lineage intermediate,the data indicate that a developmental relationship between the B and macrophage lineages is retained during postnatal hematopoiesis.
View Publication