Boucherie C et al. (FEB 2013)
Stem Cells 31 2 408--414
Brief Report: Self-Organizing Neuroepithelium from Human Pluripotent Stem Cells Facilitates Derivation of Photoreceptors
Retinitis pigmentosa,other inherited retinal diseases,and age-related macular degeneration lead to untreatable blindness because of the loss of photoreceptors. We have recently shown that transplantation of mouse photoreceptors can result in improved vision. It is therefore timely to develop protocols for efficient derivation of photoreceptors from human pluripotent stem (hPS) cells. Current methods for photoreceptor derivation from hPS cells require long periods of culture and are rather inefficient. Here,we report that formation of a transient self-organized neuroepithelium from human embryonic stem cells cultured together with extracellular matrix is sufficient to induce a rapid conversion into retinal progenitors in 5 days. These retinal progenitors have the ability to differentiate very efficiently into Crx+ photoreceptor precursors after only 10 days and subsequently acquire rod photoreceptor identity within 4 weeks. Directed differentiation into photoreceptors using this protocol is also possible with human-induced pluripotent stem (hiPS) cells,facilitating the use of patient-specific hiPS cell lines for regenerative medicine and disease modeling. STEM CELLS2013;31:408–414
View Publication
文献
Sandt C et al. (JAN 2013)
Journal of Biophotonics 6 1 60--72
Profiling pluripotent stem cells and organelles using synchrotron radiation infrared microspectroscopy
FTIR micro-spectroscopy is a sensitive,non-destructive and label-free method offering diffraction-limited resolution with high signal-to-noise ratios when combined with a synchrotron radiation source. The vibrational signature of individual cells was used to validate an alternative strategy for reprogramming induced pluripotent stem cells generated from amniocytes. The iPSC lines PB09 and PB10,were reprogrammed from the same amniocyte cell line using respectively the Oct54,Sox2,Lin28,and Nanog and the Oct4 and Sox2 transcription factor cocktail. We show that cells reprogrammed by the two different sets of transfection factors have similar spectral signatures after reprogramming,except for a small subpopulation of cells in one of the cell lines. Mapping HeLa cells at subcellular resolution,we show that the Golgi apparatus,the cytoplasm and the nucleus have a specific spectral signature. The CH(3):CH(2) ratio is the highest in the nucleus and the lowest in the Golgi apparatus/endoplasmic reticulum,in agreement with the membrane composition of these organelles. This is confirmed by specific staining of the organelles with fluorescent dyes. Subcellular differentiation of cell compartments is also demonstrated in living cells.
View Publication
文献
Meuleman W et al. (FEB 2013)
Genome Research 23 2 270--280
Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence
In metazoans,the nuclear lamina is thought to play an important role in the spatial organization of interphase chromosomes,by providing anchoring sites for large genomic segments named lamina-associated domains (LADs). Some of these LADs are cell-type specific,while many others appear constitutively associated with the lamina. Constitutive LADs (cLADs) may contribute to a basal chromosome architecture. By comparison of mouse and human lamina interaction maps,we find that the sizes and genomic positions of cLADs are strongly conserved. Moreover,cLADs are depleted of synteny breakpoints,pointing to evolutionary selective pressure to keep cLADs intact. Paradoxically,the overall sequence conservation is low for cLADs. Instead,cLADs are universally characterized by long stretches of DNA of high A/T content. Cell-type specific LADs also tend to adhere to this A/T rule" in embryonic stem cells�
View Publication
文献
Mehta A et al. (FEB 2013)
Toxicological Sciences 131 2 458--469
Pharmacoelectrophysiology of viral-free induced pluripotent stem cell-derived human cardiomyocytes
Development of pharmaceutical agents for cardiac indication demands elaborate safety screening in which assessing repolarization of cardiac cells remains a critical path in risk evaluations. An efficient platform for evaluating cardiac repolarization in vitro significantly facilitates drug developmental programs. In a proof of principle study,we examined the effect of antiarrhythmogenic drugs (Vaughan Williams class I-IV) and noncardiac active drugs (terfenadine and cisapride) on the repolarization profile of viral-free human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Extracellular field potential (FP) recording using microelectrode arrays demonstrated significant delayed repolarization as prolonged corrected FP durations (cFPDs) by class I (quinidine and flecainide),class III (sotalol and amiodarone),and class IV (verapamil),whereas class II drugs (propranolol and nadolol) had no effects. Consistent with their sodium channel-blocking ability,class I drugs also significantly reduced FPmin and conduction velocity. Although lidocaine (class IB) had no effects on cFPDs,verapamil shortened cFPD and FPmin by 25 and 50%,respectively. Furthermore,verapamil reduced beating frequencies drastically. Importantly,the examined drugs exhibited dose-response curve on prolongation of cFPDs at an effective range that correlated significantly with therapeutic plasma concentrations achieved clinically. Consistent with clinical outcomes,drug-induced arrhythmia of tachycardia and bigeminy-like waveforms by quinidine,flecainide,and sotalol was demonstrated at supraphysiological concentrations. Furthermore,off-target effects of terfenadine and cisapride on cFPD and Na( + ) channel blockage were similarly revealed. These results suggest that hiPSC-CMs may be useful for safety evaluation of cardioactive and noncardiac acting drugs for personalized medicine.
View Publication
文献
Chan LY et al. (JAN 2013)
Biomaterials 34 2 382--392
Temporal application of topography to increase the rate of neural differentiation from human pluripotent stem cells.
Human pluripotent stem cells (hPSCs) are a promising cell source for tissue engineering and regenerative medicine,especially in the field of neurobiology. Neural differentiation protocols have been developed to differentiate hPSCs into specific neural cells,but these predominantly rely on biochemical cues. Recently,differentiation protocols have incorporated topographical cues to increase the total neuronal yield. However,the means by which these topographical cues improve neuronal yield remains unknown. In this study,we explored the effect of topography on the neural differentiation of hPSC by quantitatively studying the changes in marker expression at a transcript and protein level. We found that 2 ??m gratings increase the rate of neural differentiation,and that an additional culture period of 2 ??m gratings in the absence of neurotrophic signals can improve the neural differentiation of hPSCs. We envisage that this work can be incorporated into future differentiation protocols to decrease the differentiation period as well as the biochemical signals added,thus generating hPSC-derived neural cells in a more cost effective and efficient manner. ?? 2012 Elsevier Ltd.
View Publication
文献
White MP et al. (JAN 2013)
STEM CELLS 31 1 92--103
Limited Gene Expression Variation in Human Embryonic Stem Cell and Induced Pluripotent Stem Cell-Derived Endothelial Cells
Recent evidence suggests human embryonic stem cell (hESC) and induced pluripotent stem (iPS) cell lines have differences in their epigenetic marks and transcriptomes,yet the impact of these differences on subsequent terminally differentiated cells is less well understood. Comparison of purified,homogeneous populations of somatic cells derived from multiple independent human iPS and ES lines will be required to address this critical question. Here,we report a differentiation protocol based on embryonic development that consistently yields large numbers of endothelial cells (ECs) derived from multiple hESCs or iPS cells. Mesoderm differentiation of embryoid bodies was maximized,and defined growth factors were used to generate KDR+ EC progenitors. Magnetic purification of a KDR+ progenitor subpopulation resulted in an expanding,homogeneous pool of ECs that expressed EC markers and had functional properties of ECs. Comparison of the transcriptomes revealed limited gene expression variability between multiple lines of human iPS-derived ECs or between lines of ES- and iPS-derived ECs. These results demonstrate a method to generate large numbers of pure human EC progenitors and differentiated ECs from pluripotent stem cells and suggest individual lineages derived from human iPS cells may have significantly less variance than their pluripotent founders. STEM Cells2013;31:92–103
View Publication
文献
Liu G-H et al. (NOV 2012)
Nature 491 7425 0--4
Progressive degeneration of human neural stem cells caused by pathogenic LRRK2
Nuclear-architecture defects have been shown to correlate with the manifestation of a number of human diseases as well as ageing. It is therefore plausible that diseases whose manifestations correlate with ageing might be connected to the appearance of nuclear aberrations over time. We decided to evaluate nuclear organization in the context of ageing-associated disorders by focusing on a leucine-rich repeat kinase 2 (LRRK2) dominant mutation (G2019S; glycine-to-serine substitution at amino acid 2019),which is associated with familial and sporadic Parkinson's disease as well as impairment of adult neurogenesis in mice. Here we report on the generation of induced pluripotent stem cells (iPSCs) derived from Parkinson's disease patients and the implications of LRRK2(G2019S) mutation in human neural-stem-cell (NSC) populations. Mutant NSCs showed increased susceptibility to proteasomal stress as well as passage-dependent deficiencies in nuclear-envelope organization,clonal expansion and neuronal differentiation. Disease phenotypes were rescued by targeted correction of the LRRK2(G2019S) mutation with its wild-type counterpart in Parkinson's disease iPSCs and were recapitulated after targeted knock-in of the LRRK2(G2019S) mutation in human embryonic stem cells. Analysis of human brain tissue showed nuclear-envelope impairment in clinically diagnosed Parkinson's disease patients. Together,our results identify the nucleus as a previously unknown cellular organelle in Parkinson's disease pathology and may help to open new avenues for Parkinson's disease diagnoses as well as for the potential development of therapeutics targeting this fundamental cell structure.
View Publication
文献
O'Reilly D et al. (FEB 2013)
Genome Research 23 2 281--291
Differentially expressed, variant U1 snRNAs regulate gene expression in human cells
Human U1 small nuclear (sn)RNA,required for splicing of pre-mRNA,is encoded by genes on chromosome 1 (1p36). Imperfect copies of these U1 snRNA genes,also located on chromosome 1 (1q12-21),were thought to be pseudogenes. However,many of these variant" (v)U1 snRNA genes produce fully processed transcripts. Using antisense oligonucleotides to block the activity of a specific vU1 snRNA in HeLa cells�
View Publication
文献
Almeida S et al. (OCT 2012)
Cell reports 2 4 789--798
Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects
The pathogenic mechanisms of frontotemporal dementia (FTD) remain poorly understood. Here we generated multiple induced pluripotent stem cell lines from a control subject,a patient with sporadic FTD,and an FTD patient with a novel heterozygous GRN mutation (progranulin [PGRN] S116X). In neurons and microglia differentiated from PGRN S116X induced pluripotent stem cells,the levels of intracellular and secreted PGRN were reduced,establishing patient-specific cellular models of PGRN haploinsufficiency. Through a systematic screen of inducers of cellular stress,we found that PGRN S116X neurons,but not sporadic FTD neurons,exhibited increased sensitivity to staurosporine and other kinase inhibitors. Moreover,the serine/threonine kinase S6K2,a component of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways,was specifically downregulated in PGRN S116X neurons. Both increased sensitivity to kinase inhibitors and reduced S6K2 were rescued by PGRN expression. Our findings identify cell-autonomous,reversible defects in patient neurons with PGRN deficiency,and provide a compelling model for studying PGRN-dependent pathogenic mechanisms and testing potential therapies
View Publication
文献
MacLean Ga et al. (OCT 2012)
Proceedings of the National Academy of Sciences 109 43 17567--17572
Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells
Trisomy 21 is associated with hematopoietic abnormalities in the fetal liver,a preleukemic condition termed transient myeloproliferative disorder,and increased incidence of acute megakaryoblastic leukemia. Human trisomy 21 pluripotent cells of various origins,human embryonic stem (hES),and induced pluripotent stem (iPS) cells,were differentiated in vitro as a model to recapitulate the effects of trisomy on hematopoiesis. To mitigate clonal variation,we isolated disomic and trisomic subclones from the same parental iPS line,thereby generating subclones isogenic except for chromosome 21. Under differentiation conditions favoring development of fetal liver-like,γ-globin expressing,definitive hematopoiesis,we found that trisomic cells of hES,iPS,or isogenic origins exhibited a two- to fivefold increase in a population of CD43(+)(Leukosialin)/CD235(+)(Glycophorin A) hematopoietic cells,accompanied by increased multilineage colony-forming potential in colony-forming assays. These findings establish an intrinsic disturbance of multilineage myeloid hematopoiesis in trisomy 21 at the fetal liver stage.
View Publication
文献
Yang J-Y et al. (JUN 2013)
Cell Transplantation 22 6 945--959
SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells.
Neural cells derived from induced pluripotent stem cells (iPSCs) have the potential for autologous cell therapies in treating patients with severe neurological disorders or injury. However,further study of efficacy and safety are needed in large animal preclinical models that have similar neural anatomy and physiology to humans such as the pig. The pig model for pluripotent stem cell therapy has been made possible for the first time with the development of pig iPSCs (piPSCs) capable of in vitro and in vivo differentiation into tissues of all three germ layers. Still,the question remains if piPSCs are capable of undergoing robust neural differentiation using a system similar to those being used with human iPSCs. In this study,we generated a new line of piPSCs from fibroblast cells that expressed pluripotency markers and were capable of embryoid body differentiation into all three germ layers. piPSCs demonstrated robust neural differentiation forming βIII-TUB/MAP2+ neurons,GFAP+ astrocytes,and O4+ oligodendrocytes and demonstrated strong upregulation of neural cell genes representative of all three major neural lineages of the central nervous system. In the presence of motor neuron signaling factors,piPSC-derived neurons showed expression of transcription factors associated with motor neuron differentiation (HB9 and ISLET1). Our findings demonstrate that SSEA4 expression is required for piPSCs to differentiate into neurons,astrocytes,and oligodendrocytes and furthermore develop specific neuronal subtypes. This indicates that the pigs can fill the need for a powerful model to study autologous neural iPSC therapies in a system similar to humans.
View Publication
文献
Quenneville S et al. (OCT 2012)
Cell Reports 2 4 766--773
The KRAB-ZFP/KAP1 System Contributes to the Early Embryonic Establishment of Site-Specific DNA Methylation Patterns Maintained during Development
De novo DNA methylation is an essential aspect of the epigenetic reprogramming that takes place during early development,yet factors responsible for its instatement at particular genomic loci are poorly defined. Here,we demonstrate that the KRAB-ZFP-mediated recruitment of KAP1 to DNA in embryonic stem cells (ESCs) induces cytosine methylation. This process is preceded by H3K9 trimethylation,and genome-wide analyses reveal that it spreads over short distances from KAP1-binding sites so as to involve nearby CpG islands. In sharp contrast,in differentiated cells,KRAB/KAP1-induced heterochromatin formation does not lead to DNA methylation. Correspondingly,the methylation status of CpG islands in the adult mouse liver correlates with their proximity to KAP1-binding sites in ESCs,not in hepatocytes. Therefore,KRAB-ZFPs and their cofactor KAP1 are in part responsible for the establishment during early embryogenesis of site-specific DNA methylation patterns that are maintained through development
View Publication