NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer.
NLRs (nucleotide-binding domain and leucine-rich repeats) belong to a large family of cytoplasmic sensors that regulate an extraordinarily diverse range of biological functions. One of these functions is to contribute to immunity against infectious diseases,but dysregulation of their functional activity leads to the development of inflammatory and autoimmune diseases. Cytoplasmic innate immune sensors,including NLRs,are central regulators of intestinal homeostasis. NLRC3 (also known as CLR16.2 or NOD3) is a poorly characterized member of the NLR family and was identified in a genomic screen for genes encoding proteins bearing leucine-rich repeats (LRRs) and nucleotide-binding domains. Expression of NLRC3 is drastically reduced in the tumour tissue of patients with colorectal cancer compared to healthy tissues,highlighting an undefined potential function for this sensor in the development of cancer. Here we show that mice lacking NLRC3 are hyper-susceptible to colitis and colorectal tumorigenesis. The effect of NLRC3 is most dominant in enterocytes,in which it suppresses activation of the mTOR signalling pathways and inhibits cellular proliferation and stem-cell-derived organoid formation. NLRC3 associates with PI3Ks and blocks activation of the PI3K-dependent kinase AKT following binding of growth factor receptors or Toll-like receptor 4. These findings reveal a key role for NLRC3 as an inhibitor of the mTOR pathways,mediating protection against colorectal cancer.
View Publication
文献
Pattison AM et al. (OCT 2016)
Infection and immunity 84 10 3083--91
Intestinal Enteroids Model Guanylate Cyclase C-Dependent Secretion Induced by Heat-Stable Enterotoxins.
Enterotoxigenic Escherichia coli (ETEC) causes 20% of the acute infectious diarrhea (AID) episodes worldwide,often by producing heat-stable enterotoxins (STs),which are peptides structurally homologous to paracrine hormones of the intestinal guanylate cyclase C (GUCY2C) receptor. While molecular mechanisms mediating ST-induced intestinal secretion have been defined,advancements in therapeutics have been hampered for decades by the paucity of disease models that integrate molecular and functional endpoints amenable to high-throughput screening. Here,we reveal that mouse and human intestinal enteroids in three-dimensional ex vivo cultures express the components of the GUCY2C secretory signaling axis. ST and its structural analog,linaclotide,an FDA-approved oral secretagog,induced fluid accumulation quantified simultaneously in scores of enteroid lumens,recapitulating ETEC-induced intestinal secretion. Enteroid secretion depended on canonical molecular signaling events responsible for ETEC-induced diarrhea,including cyclic GMP (cGMP) produced by GUCY2C,activation of cGMP-dependent protein kinase (PKG),and opening of the cystic fibrosis transmembrane conductance regulator (CFTR). Importantly,pharmacological inhibition of CFTR abrogated enteroid fluid secretion,providing proof of concept for the utility of this model to screen antidiarrheal agents. Intestinal enteroids offer a unique model,integrating the GUCY2C signaling axis and luminal fluid secretion,to explore the pathophysiology of,and develop platforms for,high-throughput drug screening to identify novel compounds to prevent and treat ETEC diarrheal disease.
View Publication
文献
Ibiza S et al. (JUL 2016)
Nature 535 7612 440--443
Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence.
Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed,but how ILC3 perceive,integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial"ILC3"epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22),impaired epithelial reactivity,dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably,ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly,glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit,revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals.
View Publication
文献
Wang Y et al. (MAR 2017)
Mucosal immunology 10 2 373--384
An LGG-derived protein promotes IgA production through upregulation of APRIL expression in intestinal epithelial cells.
p40,a Lactobacillus rhamnosus GG (LGG)-derived protein,transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells,leading to amelioration of intestinal injury and inflammation. To elucidate mechanisms by which p40 regulates mucosal immunity to prevent inflammation,this study aimed to determine the effects and mechanisms of p40 on regulation of a proliferation-inducing ligand (APRIL) expression in intestinal epithelial cells for promoting immunoglobulin A (IgA) production. p40 upregulated April gene expression and protein production in mouse small intestine epithelial (MSIE) cells,which were inhibited by blocking EGFR expression and kinase activity. Enteroids from Egfr(fl/fl),but not Egfr(fl/fl)-Vil-Cre mice with EGFR specifically deleted in intestinal epithelial cells,exhibited increased April gene expression by p40 treatment. p40-conditioned media from MSIE cells increased B-cell class switching to IgA(+) cells and IgA production,which was suppressed by APRIL receptor-neutralizing antibodies. Treatment of B cells with p40 did not show any effects on IgA production. p40 treatment increased April gene expression and protein production in small intestinal epithelial cells,fecal IgA levels,IgA(+)B220(+),IgA(+)CD19(+),and IgA(+) plasma cells in lamina propria of Egfr(fl/fl),but not of Egfr(fl/fl)-Vil-Cre,mice. Thus p40 upregulates EGFR-dependent APRIL production in intestinal epithelial cells,which may contribute to promoting IgA production.
View Publication
文献
Tomé et al. (AUG 2016)
The Journal of nutritional biochemistry 34 146--55
Hydroxytyrosol supplementation modulates the expression of miRNAs in rodents and in humans.
Dietary microRNAs (miRNAs) modulation could be important for health and wellbeing. Part of the healthful activities of polyphenols might be due to a modulation of miRNAs' expression. Among the most biologically active polyphenols,hydroxytyrosol (HT) has never been studied for its actions on miRNAs. We investigated whether HT could modulate the expression of miRNAs in vivo. We performed an unbiased intestinal miRNA screening in mice supplemented (for 8 weeks) with nutritionally relevant amounts of HT. HT modulated the expression of several miRNAs. Analysis of other tissues revealed consistent HT-induced modulation of only few miRNAs. Also,HT administration increased triglycerides levels. Acute treatment with HT and in vitro experiments provided mechanistic insights. The HT-induced expression of one miRNA was confirmed in healthy volunteers supplemented with HT in a randomized,double-blind and placebo-controlled trial. HT consumption affects specific miRNAs' expression in rodents and humans. Our findings suggest that the modulation of miRNAs' action through HT consumption might partially explain its healthful activities and might be pharmanutritionally exploited in current therapies targeting endogenous miRNAs. However,the effects of HT on triglycerides warrant further investigations.
View Publication
文献
Banerjee A et al. (JUL 2016)
Oncotarget 7 27 41432--41444
Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment
Olfactomedin 4 deletion induces colon adenocarcinoma in Apc(Min/+) mice.
Colon carcinogenesis is a multiple-step process involving the accumulation of a series of genetic and epigenetic alterations. The most commonly initiating event of intestinal carcinogenesis is mutation of the adenomatous polyposis coli (APC) gene,which leads to activation of the Wnt/β-catenin pathway. Olfactomedin 4 (OLFM4) has emerged as an intestinal stem-cell marker,but its biological function in the intestine remains to be determined. Here we show that Olfm4 deletion induced colon adenocarcinoma in the distal colon of Apc(Min/+) mice. Mechanistically,we found that OLFM4 is a target gene of the Wnt/β-catenin pathway and can downregulate β-catenin signaling by competing with Wnt ligands for binding to Frizzled receptors,as well as by inhibition of the Akt-GSK-3β (Akt-glycogen synthase kinase-3β) pathway. We have shown that both Wnt and nuclear factor-κB (NF-κB) signaling were boosted in tumor tissues of Apc Olfm4 double-mutant mice. These data establish OLFM4 as a critical negative regulator of the Wnt/β-catenin and NF-κB pathways that inhibits colon-cancer development initiated by APC mutation. In addition,Olfm4 deletion significantly enhanced intestinal-crypt proliferation and inflammation induced by azoxymethane/dextran sodium sulfate. Thus,OLFM4 has an important role in the regulation of intestinal inflammation and tumorigenesis,and could be a potential therapeutic target for intestinal malignant tumors. Unlike the human colonic epithelium,the mouse colonic epithelium does not express OLFM4,but nevertheless,systemic OLFM4 deletion promotes colon tumorigenesis and that loss from mucosal neutrophils may have a role to play.
View Publication
文献
Cao X et al. (JAN 2015)
Respiratory research 16 30
Tight junction disruption by cadmium in an in vitro human airway tissue model.
BACKGROUND: The cadmium (Cd) present in air pollutants and cigarette smoke has the potential of causing multiple adverse health outcomes involving damage to pulmonary and cardiovascular tissue. Injury to pulmonary epithelium may include alterations in tight junction (TJ) integrity,resulting in impaired epithelial barrier function and enhanced penetration of chemicals and biomolecules. Herein,we investigated mechanisms involved in the disruption of TJ integrity by Cd exposure using an in vitro human air-liquid-interface (ALI) airway tissue model derived from normal primary human bronchial epithelial cells. METHODS: ALI cultures were exposed to noncytotoxic doses of CdCl2 basolaterally and TJ integrity was measured by Trans-Epithelial Electrical Resistance (TEER) and immunofluorescence staining with TJ markers. PCR array analysis was used to identify genes involved with TJ collapse. To explore the involvement of kinase signaling pathways,cultures were treated with CdCl2 in the presence of kinase inhibitors specific for cellular Src or Protein Kinase C (PKC). RESULTS: Noncytotoxic doses of CdCl2 resulted in the collapse of barrier function,as demonstrated by TEER measurements and Zonula occludens-1 (ZO-1) and occludin staining. CdCl2 exposure altered the expression of several groups of genes encoding proteins involved in TJ homeostasis. In particular,down-regulation of select junction-interacting proteins suggested that a possible mechanism for Cd toxicity involves disruption of the peripheral junctional complexes implicated in connecting membrane-bound TJ components to the actin cytoskeleton. Inhibition of kinase signaling using inhibitors specific for cellular Src or PKC preserved the integrity of TJs,possibly by preventing occludin tyrosine hyperphosphorylation,rather than reversing the down-regulation of the junction-interacting proteins. CONCLUSIONS: Our findings indicate that acute doses of Cd likely disrupt TJ integrity in human ALI airway cultures both through occludin hyperphosphorylation via kinase activation and by direct disruption of the junction-interacting complex.
View Publication
文献
Chen Q et al. (AUG 2014)
BMC pulmonary medicine 14 1 135
BACKGROUND Acute respiratory distress syndrome (ARDS) is characterized by overwhelming inflammatory responses and lung remodeling. We hypothesized that leukocyte infiltration during the inflammatory response modulates epithelial remodeling through a mechanism of epithelial-mesenchymal transition (EMT). METHODS Human lung epithelial cells were treated for 30 min with hydrochloric acid (HCl). Human monocytes were then cocultured with the epithelial cells for up to 48 h,in the presence or absence of blocking peptides against lymphocyte function-associated antigen-1 (LFA-1),or tyrphostin A9,a specific inhibitor for platelet-derived growth factor (PDGF) receptor tyrosine kinase. RESULTS Exposure of lung epithelial cells to HCl resulted in increased expression of intercellular adhesion molecule-1 (ICAM-1) and production of interleukin (IL)-8 at 24 h. The expression of the epithelial markers E-cadherin decreased while the mesenchymal markers vimentin and α-smooth muscle actin (α-SMA) increased at 24 h and remained high at 48 h. The addition of monocytes augmented the profiles of lower expression of epithelial markers and higher mesenchymal markers accompanied by increased collagen deposition. This EMT profile was associated with an enhanced production of IL-8 and PDGF. Treatment of the lung epithelial cells with the LAF-1 blocking peptides CD11a237-246 or/and CD18112-122 suppressed monocyte adhesion,production of IL-8,PDGF and hydroxyproline as well as EMT markers. Treatment with tyrphostin A9 prevented the EMT profile shift induced by HCl stimulation. CONCLUSIONS The interaction between epithelial cells and monocytes enhanced epithelial remodelling after initial injury through EMT signalling that is associated with the release of soluble mediators,including IL-8 and PDGF.
View Publication
文献
Buffington DA et al. (JAN 2012)
Cell medicine 4 1 33--43
Bioartificial Renal Epithelial Cell System (BRECS): A Compact, Cryopreservable Extracorporeal Renal Replacement Device.
Renal cell therapy has shown clinical efficacy in the treatment of acute renal failure (ARF) and promise for treatment of end-stage renal disease (ESRD) by supplementing conventional small solute clearance (hemodialysis or hemofiltration) with endocrine and metabolic function provided by cells maintained in an extracorporeal circuit. A major obstacle in the widespread adoption of this therapeutic approach is the lack of a cryopreservable system to enable distribution,storage,and therapeutic use at point of care facilities. This report details the design,fabrication,and assessment of a Bioartificial Renal Epithelial Cell System (BRECS),the first all-in-one culture vessel,cryostorage device,and cell therapy delivery system. The BRECS was loaded with up to 20 cell-seeded porous disks,which were maintained by perfusion culture. Once cells reached over 5 A- 10(6) cells/disk for a total therapeutic dose of approximately 10(8) cells,the BRECS was cryopreserved for storage at -80°C or -140°C. The BRECS was rapidly thawed,and perfusion culture was resumed. Near precryopreservation values of cell viability,metabolic activity,and differentiated phenotype of functional renal cells were confirmed post-reconstitution. This technology could be extended to administer other cell-based therapies where metabolic,regulatory,or secretion functions can be leveraged in an immunoisolated extracorporeal circuit.
View Publication
文献
Tata PR et al. (NOV 2013)
Nature 503 7475 218--23
Dedifferentiation of committed epithelial cells into stem cells in vivo.
Cellular plasticity contributes to the regenerative capacity of plants,invertebrates,teleost fishes and amphibians. In vertebrates,differentiated cells are known to revert into replicating progenitors,but these cells do not persist as stable stem cells. Here we present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. After the ablation of airway stem cells,we observed a surprising increase in the proliferation of committed secretory cells. Subsequent lineage tracing demonstrated that the luminal secretory cells had dedifferentiated into basal stem cells. Dedifferentiated cells were morphologically indistinguishable from stem cells and they functioned as well as their endogenous counterparts in repairing epithelial injury. Single secretory cells clonally dedifferentiated into multipotent stem cells when they were cultured ex vivo without basal stem cells. By contrast,direct contact with a single basal stem cell was sufficient to prevent secretory cell dedifferentiation. In analogy to classical descriptions of amphibian nuclear reprogramming,the propensity of committed cells to dedifferentiate is inversely correlated to their state of maturity. This capacity of committed cells to dedifferentiate into stem cells may have a more general role in the regeneration of many tissues and in multiple disease states,notably cancer.
View Publication
文献
Pino CJ et al. (FEB 2013)
Nephrology,dialysis,transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 28 2 296--302
Cell-based approaches for the treatment of systemic inflammation.
Acute and chronic solid organ failures are costly disease processes with high mortality rates. Inflammation plays a central role in both acute and chronic organ failure,including heart,lung and kidney. In this regard,new therapies for these disorders have focused on inhibiting the mediators of inflammation,including cytokines and free radicals,with little or no success in clinical studies. Recent novel treatment strategies have been directed to cell-based rather than mediator-based approaches,designed to immunomodulate the deleterious effects of inflammation on organ function. One approach,cell therapy,replaces cells that were damaged in the acute or chronic disease process with stem/progenitor technology,to rebalance excessive inflammatory states. As an example of this approach,the use of an immunomodulatory role of renal epithelial progenitor cells to treat acute renal failure (ARF) and multiorgan failure arising from acute kidney injury is reviewed. A second therapeutic pathway,cell processing,does not incorporate stem/progenitor cells in the device,but rather biomimetic materials that remove and modulate the primary cellular components,which promote the worsening organ tissue injury associated with inflammation. The use of an immunomodulating leukocyte selective cytopheretic inhibitory device is also reviewed as an example of this cell processing approach. Both of these unconventional strategies have shown early clinical efficacy in pilot clinical trials and may transform the therapeutic approach to organ failure disorders.
View Publication