Rizzuto GA et al. (APR 2009)
The Journal of experimental medicine 206 4 849--66
Self-antigen-specific CD8+ T cell precursor frequency determines the quality of the antitumor immune response.
A primary goal of cancer immunotherapy is to improve the naturally occurring,but weak,immune response to tumors. Ineffective responses to cancer vaccines may be caused,in part,by low numbers of self-reactive lymphocytes surviving negative selection. Here,we estimated the frequency of CD8(+) T cells recognizing a self-antigen to be textless0.0001% ( approximately 1 in 1 million CD8(+) T cells),which is so low as to preclude a strong immune response in some mice. Supplementing this repertoire with naive antigen-specific cells increased vaccine-elicited tumor immunity and autoimmunity,but a threshold was reached whereby the transfer of increased numbers of antigen-specific cells impaired functional benefit,most likely because of intraclonal competition in the irradiated host. We show that cells primed at precursor frequencies below this competitive threshold proliferate more,acquire polyfunctionality,and eradicate tumors more effectively. This work demonstrates the functional relevance of CD8(+) T cell precursor frequency to tumor immunity and autoimmunity. Transferring optimized numbers of naive tumor-specific T cells,followed by in vivo activation,is a new approach that can be applied to human cancer immunotherapy. Further,precursor frequency as an isolated variable can be exploited to augment efficacy of clinical vaccine strategies designed to activate any antigen-specific CD8(+) T cells.
View Publication
文献
Park S-R et al. (MAY 2009)
Nature immunology 10 5 540--50
HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation.
The cytidine deaminase AID (encoded by Aicda in mice and AICDA in humans) is critical for immunoglobulin class-switch recombination (CSR) and somatic hypermutation (SHM). Here we show that AID expression was induced by the HoxC4 homeodomain transcription factor,which bound to a highly conserved HoxC4-Oct site in the Aicda or AICDA promoter. This site functioned in synergy with a conserved binding site for the transcription factors Sp1,Sp3 and NF-kappaB. HoxC4 was 'preferentially' expressed in germinal center B cells and was upregulated by engagement of CD40 by CD154,as well as by lipopolysaccharide and interleukin 4. HoxC4 deficiency resulted in impaired CSR and SHM because of lower AID expression and not some other putative HoxC4-dependent activity. Enforced expression of AID in Hoxc4(-/-) B cells fully restored CSR. Thus,HoxC4 directly activates the Aicda promoter,thereby inducing AID expression,CSR and SHM.
View Publication
文献
Takahashi N et al. (MAY 2009)
Journal of immunology (Baltimore,Md. : 1950) 182 9 5515--27
Impaired CD4 and CD8 effector function and decreased memory T cell populations in ICOS-deficient patients.
Interaction of ICOS with its ligand is essential for germinal center formation,T cell immune responses,and development of autoimmune diseases. Human ICOS deficiency has been identified worldwide in nine patients with identical ICOS mutations. In vitro studies of the patients to date have shown only mild T cell defect. In this study,we report an in-depth analysis of T cell function in two siblings with novel ICOS deficiency. The brother displayed mild skin infections and impaired Ig class switching,whereas the sister had more severe symptoms,including immunodeficiency,rheumatoid arthritis,inflammatory bowel disease,interstitial pneumonitis,and psoriasis. Despite normal CD3/CD28-induced proliferation and IL-2 production in vitro,peripheral blood T cells in both patients showed a decreased percentage of CD4 central and effector memory T cells and impaired production of Th1,Th2,and Th17 cytokines upon CD3/CD28 costimulation or PMA/ionophore stimulation. The defective polarization into effector cells was associated with impaired induction of T-bet,GATA3,MAF,and retinoic acid-related orphan nuclear hormone receptor (RORC). Reduced CTLA-4(+)CD45RO(+)FoxP3(+) regulatory T cells and diminished induction of inhibitory cell surface molecules,including CTLA-4,were also observed in the patients. T cell defect was not restricted to CD4 T cells because reduced memory T cells and impaired IFN-gamma production were also noted in CD8 T cells. Further analysis of the patients demonstrated increased induction of receptor activator of NF-kappaB ligand (RANKL),lack of IFN-gamma response,and loss of Itch expression upon activation in the female patient,who had autoimmunity. Our study suggests that extensive T cell dysfunction,decreased memory T cell compartment,and imbalance between effector and regulatory cells in ICOS-deficient patients may underlie their immunodeficiency and/or autoimmunity.
View Publication
文献
Grinshtein N et al. (MAY 2009)
Cancer research 69 9 3979--85
Neoadjuvant vaccination provides superior protection against tumor relapse following surgery compared with adjuvant vaccination.
Tumors that recur following surgical resection of melanoma are typically metastatic and associated with poor prognosis. Using the murine B16F10 melanoma and a robust antimelanoma vaccine,we evaluated immunization as a tool to improve tumor-free survival following surgery. We investigated the utility of vaccination in both neoadjuvant and adjuvant settings. Surprisingly,neoadjuvant vaccination was far superior and provided approximately 100% protection against tumor relapse. Neoadjuvant vaccination was associated with enhanced frequencies of tumor-specific T cells within the tumor and the tumor-draining lymph nodes following resection. We also observed increased infiltration of antigen-specific T cells into the area of surgery. This method should be amenable to any vaccine platform and can be readily extended to the clinic.
View Publication
文献
Fenoglio D et al. (JUN 2009)
Blood 113 26 6611--8
Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans.
In early HIV-1 infection,Vdelta1 T lymphocytes are increased in peripheral blood and this is related to chemokine receptor expression,chemokine response,and recirculation. Herein we show that,at variance with healthy donors,in HIV-1-infected patients ex vivo-isolated Vdelta1 T cells display cytoplasmic interferon-gamma (IFN-gamma). Interestingly,these cells coexpress cytoplasmic interleukin-17 (IL-17),and bear the CD27 surface marker of the memory T-cell subset. Vdelta1 T cells,isolated from either patients or healthy donors,can proliferate and produce IFN-gamma and IL-17 in response to Candida albicans in vitro,whereas Vdelta2 T cells respond with proliferation and IFN-gamma/IL-17 production to mycobacterial or phosphate antigens. These IFN-gamma/IL-17 double-producer gammadelta T cells express the Th17 RORC and the Th1 TXB21 transcription factors and bear the CCR7 homing receptor and the CD161 molecule that are involved in gammadelta T-cell transendothelial migration. Moreover,Vdelta1 T cells responding to C albicans express the chemokine receptors CCR4 and CCR6. This specifically equipped circulating memory gammadelta T-cell population might play an important role in the control of HIV-1 spreading and in the defense against opportunistic infections,possibly contributing to compensate for the impairment of CD4(+) T cells.
View Publication
文献
Elsaesser H et al. (JUN 2009)
Science (New York,N.Y.) 324 5934 1569--72
IL-21 is required to control chronic viral infection.
CD4+ and CD8+ T cell functions are rapidly aborted during chronic infection,preventing viral clearance. CD4+ T cell help is required throughout chronic infection so as to sustain CD8+ T cell responses; however,the necessary factor(s) provided by CD4+ T cells are currently unknown. Using a mouse model of chronic viral infection,we demonstrated that interleukin-21 (IL-21) is an essential component of CD4+ T cell help. In the absence of IL-21 signaling,despite elevated CD4+ T cell responses,CD8+ T cell responses are severely impaired. CD8+ T cells directly require IL-21 to avoid deletion,maintain immunity,and resolve persistent infection. Thus,IL-21 specifically sustains CD8+ T cell effector activity and provides a mechanism of CD4+ T cell help during chronic viral infection.
View Publication
文献
Kawakami Y et al. (JUN 2009)
The Journal of experimental medicine 206 6 1219--25
Inhibition of NK cell activity by IL-17 allows vaccinia virus to induce severe skin lesions in a mouse model of eczema vaccinatum.
Threats of bioterrorism have renewed efforts to better understand poxvirus pathogenesis and to develop a safer vaccine against smallpox. Individuals with atopic dermatitis are excluded from smallpox vaccination because of their propensity to develop eczema vaccinatum,a disseminated vaccinia virus (VACV) infection. To study the underlying mechanism of the vulnerability of atopic dermatitis patients to VACV infection,we developed a mouse model of eczema vaccinatum. Virus infection of eczematous skin induced severe primary erosive skin lesions,but not in the skin of healthy mice. Eczematous mice exhibited lower natural killer (NK) cell activity but similar cytotoxic T lymphocyte activity and humoral immune responses. The role of NK cells in controlling VACV-induced skin lesions was demonstrated by experiments depleting or transferring NK cells. The proinflammatory cytokine interleukin (IL)-17 reduced NK cell activity in mice with preexisting dermatitis. Given low NK cell activities and increased IL-17 expression in atopic dermatitis patients,these results can explain the increased susceptibility of atopic dermatitis patients to eczema vaccinatum.
View Publication
文献
Doreau A et al. (JUL 2009)
Nature immunology 10 7 778--85
Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus.
Studies have suggested involvement of interleukin 17 (IL-17) in autoimmune diseases,although its effect on B cell biology has not been clearly established. Here we demonstrate that IL-17 alone or in combination with B cell-activating factor controlled the survival and proliferation of human B cells and their differentiation into immunoglobulin-secreting cells. This effect was mediated mainly through the nuclear factor-kappaB-regulated transcription factor Twist-1. In support of the relevance of our observations and the potential involvement of IL-17 in B cell biology,we found that the serum of patients with systemic lupus erythematosus had higher concentrations of IL-17 than did the serum of healthy people and that IL-17 abundance correlated with the disease severity of systemic lupus erythematosus.
View Publication
文献
Romieu-Mourez R et al. (JUN 2009)
Journal of immunology (Baltimore,Md. : 1950) 182 12 7963--73
Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype.
Bone marrow-derived mesenchymal stromal cells (MSC) possess an immune plasticity manifested by either an immunosuppressive or,when activated with IFN-gamma,an APC phenotype. Herein,TLR expression by MSC and their immune regulatory role were investigated. We observed that human MSC and macrophages expressed TLR3 and TLR4 at comparable levels and TLR-mediated activation of MSC resulted in the production of inflammatory mediators such as IL-1beta,IL-6,IL-8/CXCL8,and CCL5. IFN-alpha or IFN-gamma priming up-regulated production of these inflammatory mediators and expression of IFNB,inducible NO synthase (iNOS),and TRAIL upon TLR activation in MSC and macrophages,but failed to induce IL-12 and TNF-alpha production in MSC. Nonetheless,TLR activation in MSC resulted in the formation of an inflammatory site attracting innate immune cells,as evaluated by human neutrophil chemotaxis assays and by the analysis of immune effectors retrieved from Matrigel-embedded MSC injected into mice after in vitro preactivation with cytokines and/or TLR ligands. Hence,TLR-activated MSC are capable of recruiting immune inflammatory cells. In addition,IFN priming combined with TLR activation may increase immune responses induced by Ag-presenting MSC through presentation of Ag in an inflammatory context,a mechanism that could be applied in a cell-based vaccine.
View Publication
文献
Ellestad KK et al. (JUL 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 1 298--309
Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells.
The rising incidence of autoimmune diseases such as multiple sclerosis (MS) in developed countries might be due to a more hygienic environment,particularly during early life. To investigate this concept,we developed a model of neonatal exposure to a common pathogen-associated molecular pattern,LPS,and determined its impact on experimental autoimmune encephalomyelitis (EAE). Mice exposed to LPS at 2 wk of age showed a delayed onset and diminished severity of myelin oligodendrocyte glycoprotein (MOG)-induced EAE,induced at 12 wk,compared with vehicle-exposed animals. Spinal cord transcript levels of CD3epsilon and F4/80 were lower in LPS- compared with PBS-exposed EAE animals with increased IL-10 levels in the LPS-exposed group. Splenic CD11c(+) cells from LPS-exposed animals exhibited reduced MHC class II and CD83 expression but increased levels of CD80 and CD86 both before and during EAE. MOG-treated APC from LPS-exposed animals stimulated less T lymphocyte proliferation but increased expansion of CD4(+)FoxP3(+) T cells compared with APC from PBS-exposed animals. Neuropathological studies disclosed reduced myelin and axonal loss in spinal cords from LPS-exposed compared with PBS-exposed animals with EAE,and this neuroprotective effect was associated with an increased number of CD3(+)FoxP3(+) immunoreactive cells. Analyses of human brain tissue revealed that FoxP3 expression was detected in lymphocytes,albeit reduced in MS compared with non-MS patients' brains. These findings support the concept of early-life microbial exposure influencing the generation of neuroprotective regulatory T cells and may provide insights into new immunotherapeutic strategies for MS.
View Publication
文献
Garidou L et al. (SEP 2009)
Journal of virology 83 17 8905--15
Therapeutic memory T cells require costimulation for effective clearance of a persistent viral infection.
Persistent viral infections are a major health concern worldwide. During persistent infection,overwhelming viral replication and the rapid loss of antiviral T-cell function can prevent immune-mediated clearance of the infection,and therapies to reanimate the immune response and purge persistent viruses have been largely unsuccessful. Adoptive immunotherapy using memory T cells is a highly successful therapeutic approach to eradicate a persistent viral infection. Understanding precisely how therapeutically administered memory T cells achieve clearance should improve our ability to terminate states of viral persistence in humans. Mice persistently infected from birth with lymphocytic choriomeningitis virus are tolerant to the pathogen at the T-cell level and thus provide an excellent model to evaluate immunotherapeutic regimens. Previously,we demonstrated that adoptively transferred memory T cells require recipient dendritic cells to effectively purge an established persistent viral infection. However,the mechanisms that reactivate and sustain memory T-cell responses during clearance of such an infection remain unclear. Here we establish that therapeutic memory T cells require CD80 and CD86 costimulatory signals to efficiently clear an established persistent viral infection in vivo. Early blockade of costimulatory pathways with CTLA-4-Fc decreased the secondary expansion of virus-specific CD8(+) and CD4(+) memory T cells as well as their ability to produce antiviral cytokines and purge the persistent infection. Late costimulation blockade also reduced virus-specific T-cell numbers,illustrating that sustained interactions with costimulatory molecules is required for efficient T-cell expansion. These findings indicate that antiviral memory T cells require costimulation to efficiently clear a persistent viral infection and that costimulatory pathways can be targeted to modulate the magnitude of an adoptive immunotherapeutic regimen.
View Publication
文献
Eccleston J et al. (JUL 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 2 1222--8
Class switch recombination efficiency and junction microhomology patterns in Msh2-, Mlh1-, and Exo1-deficient mice depend on the presence of mu switch region tandem repeats.
The Msh2 mismatch repair (MMR) protein is critical for class switch recombination (CSR) events that occur in mice that lack the Smu tandem repeat (SmuTR) region (SmuTR(-/-) mice). The pattern of microhomology among switch junction sites in Msh2-deficient mice is also dependent on the presence or absence of SmuTR sequences. It is not known whether these CSR effects reflect an individual function of Msh2 or the function of Msh2 within the MMR machinery. In the absence of the SmuTR sequences,Msh2 deficiency nearly ablates CSR. We now show that Mlh1 or Exo1 deficiencies also eliminate CSR in the absence of the SmuTR. Furthermore,in SmuTR(-/-) mice,deficiencies of Mlh1 or Exo1 result in increased switch junction microhomology as has also been seen with Msh2 deficiency. These results are consistent with a CSR model in which the MMR machinery is important in processing DNA nicks to produce double-stranded breaks,particularly in sequences where nicks are infrequent. We propose that double-stranded break paucity in MMR-deficient mice leads to increased use of an alternative joining pathway where microhomologies are important for CSR break ligation. Interestingly,when the SmuTR region is present,deficiency of Msh2 does not lead to the increased microhomology seen with Mlh1 or Exo1 deficiencies,suggesting that Msh2 might have an additional function in CSR. It is also possible that the inability to initiate MMR in the absence of Msh2 results in CSR junctions with less microhomology than joinings that occur when MMR is initiated but then proceeds abnormally due to Mlh1 or Exo1 deficiencies.
View Publication