Fuertes MB et al. (APR 2008)
Journal of immunology (Baltimore,Md. : 1950) 180 7 4606--14
Intracellular retention of the NKG2D ligand MHC class I chain-related gene A in human melanomas confers immune privilege and prevents NK cell-mediated cytotoxicity.
Most tumors grow in immunocompetent hosts despite expressing NKG2D ligands (NKG2DLs) such as the MHC class I chain-related genes A and B (MICA/B). However,their participation in tumor cell evasion is still not completely understood. Here we demonstrate that several human melanomas (cell lines and freshly isolated metastases) do not express MICA on the cell surface but have intracellular deposits of this NKG2DL. Susceptibility to NK cell-mediated cytotoxicity correlated with the ratio of NKG2DLs to HLA class I molecules but not with the amounts of MICA on the cell surface of tumor cells. Transfection-mediated overexpression of MICA restored cell surface expression and resulted in an increased in vitro cytotoxicity and IFN-gamma secretion by human NK cells. In xenografted nude mice,these melanomas exhibited a delayed growth and extensive in vivo apoptosis. Retardation of tumor growth was due to NK cell-mediated antitumor activity against MICA-transfected tumors,given that this effect was not observed in NK cell-depleted mice. Also,mouse NK cells killed MICA-overexpressing melanomas in vitro. A mechanistic analysis revealed the retention of MICA in the endoplasmic reticulum,an effect that was associated with accumulation of endoH-sensitive (immature) forms of MICA,retrograde transport to the cytoplasm,and degradation by the proteasome. Our study identifies a novel strategy developed by melanoma cells to evade NK cell-mediated immune surveillance based on the intracellular sequestration of immature forms of MICA in the endoplasmic reticulum. Furthermore,this tumor immune escape strategy can be overcome by gene therapy approaches aimed at overexpressing MICA on tumor cells.
View Publication
文献
Schü et al. (MAY 2008)
Blood 111 9 4532--41
The MADS transcription factor Mef2c is a pivotal modulator of myeloid cell fate.
Mef2c is a MADS (MCM1-agamous-deficient serum response factor) transcription factor best known for its role in muscle and cardiovascular development. A causal role of up-regulated MEF2C expression in myelomonocytic acute myeloid leukemia (AML) has recently been demonstrated. Due to the pronounced monocytic component observed in Mef2c-induced AML,this study was designed to assess the importance of Mef2c in normal myeloid differentiation. Analysis of bone marrow (BM) cells manipulated to constitutively express Mef2c demonstrated increased monopoiesis at the expense of granulopoiesis,whereas BM isolated from Mef2c(Delta/-) mice showed reduced levels of monocytic differentiation in response to cytokines. Mechanistic studies showed that loss of Mef2c expression correlated with reduced levels of transcripts encoding c-Jun,but not PU.1,C/EBPalpha,or JunB transcription factors. Inhibiting Jun expression by short-interfering RNA impaired Mef2c-mediated inhibition of granulocyte development. Moreover,retroviral expression of c-Jun in BM cells promoted monocytic differentiation. The ability of Mef2c to modulate cell-fate decisions between monocyte and granulocyte differentiation,coupled with its functional sensitivity to extracellular stimuli,demonstrate an important role in immunity--and,consistent with findings of other myeloid transcription factors,a target of oncogenic lesions in AML.
View Publication
文献
Guia S et al. (MAY 2008)
Blood 111 10 5008--16
A role for interleukin-12/23 in the maturation of human natural killer and CD56+ T cells in vivo.
Natural killer (NK) cells have been originally defined by their naturally occurring" effector function. However�
View Publication
文献
Goldman FD et al. (MAY 2008)
Blood 111 9 4523--31
Characterization of primitive hematopoietic cells from patients with dyskeratosis congenita.
Dyskeratosis congenita (DC) is an inherited bone marrow (BM) failure syndrome associated with mutations in telomerase genes and the acquisition of shortened telomeres in blood cells. To investigate the basis of the compromised hematopoiesis seen in DC,we analyzed cells from granulocyte colony-stimulating factor mobilized peripheral blood (mPB) collections from 5 members of a family with autosomal dominant DC with a hTERC mutation. Premobilization BM samples were hypocellular,and percentages of CD34(+) cells in marrow and mPB collections were significantly below values for age-matched controls in 4 DC subjects. Directly clonogenic cells,although present at normal frequencies within the CD34(+) subset,were therefore absolutely decreased. In contrast,even the frequency of long-term culture-initiating cells within the CD34(+) DC mPB cells was decreased,and the telomere lengths of these cells were also markedly reduced. Nevertheless,the different lineages of mature cells were produced in normal numbers in vitro. These results suggest that marrow failure in DC is caused by a reduction in the ability of hematopoietic stem cells to sustain their numbers due to telomere impairment rather than a qualitative defect in their commitment to specific lineages or in the ability of their lineage-restricted progeny to execute normal differentiation programs.
View Publication
文献
Hidalgo LG et al. (MAR 2008)
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 8 3 627--36
The transcriptome of human cytotoxic T cells: similarities and disparities among allostimulated CD4(+) CTL, CD8(+) CTL and NK cells.
Transcripts expressed in cytotoxic T lymphocytes (CTL) have mechanistic and diagnostic importance in transplantation. We used microarrays to select CTL-associated transcripts (CATs) expressed in human CD4(+) CTL,CD8(+) CTL and NK cells,excluding transcripts expressed in B cells,monocytes and kidney. This generated three transcript sets: CD4(+)-associated,CD8(+)-associated and NK-associated. Surprisingly,many CATs were expressed in effector memory cells e.g. granzyme B/GZMB,interferon-gamma/IFNG. Transcript expression was very similar between CD4(+) and CD8(+) CTL. There were no transcripts highly selective for CD4(+) CTL or CD8(+) CTL: for example,cytotoxic molecule transcripts (perforin,granzymes,granulysin) were shared between CD8(+) CTL and CD4(+) CTL although expression remained higher in CD8(+) CTL. Transcripts that differentiated between CD8(+) CTL and CD4(+) CTL were primarily those shared between CD8(+) CTL and NK cells (e.g. NK receptors KLRC1,KLRC3,KLRD1,KLRK1). No transcripts could differentiate CD4(+) CTL from CD8(+) CTL but NK cell-associated transcripts could differentiate NK cells from CTL. This study serves as a foundation for the interpretation of CATs in rejecting allografts and highlights the extensive sharing of CATs among CD4(+) CTL,CD8(+) CTL and effector memory T cells.
View Publication
HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells.
Infection with human immunodeficiency virus 1 (HIV-1) results in the dissemination of virus to gut-associated lymphoid tissue. Subsequently,HIV-1 mediates massive depletion of gut CD4+ T cells,which contributes to HIV-1-induced immune dysfunction. The migration of lymphocytes to gut-associated lymphoid tissue is mediated by integrin alpha4beta7. We demonstrate here that the HIV-1 envelope protein gp120 bound to an activated form of alpha4beta7. This interaction was mediated by a tripeptide in the V2 loop of gp120,a peptide motif that mimics structures presented by the natural ligands of alpha4beta7. On CD4+ T cells,engagement of alpha4beta7 by gp120 resulted in rapid activation of LFA-1,the central integrin involved in the establishment of virological synapses,which facilitate efficient cell-to-cell spreading of HIV-1.
View Publication
文献
Vu F et al. (FEB 2008)
Journal of immunology (Baltimore,Md. : 1950) 180 4 2284--93
ICOS, CD40, and lymphotoxin beta receptors signal sequentially and interdependently to initiate a germinal center reaction.
Germinal center (GC) responses to T-dependent Ags require effective collaboration between Th cells,activated B cells,and follicular dendritic cells within a highly organized microenvironment. Studies using gene-targeted mice have highlighted nonredundant molecules that are key for initiating and maintaining the GC niche,including the molecules of the ICOS,CD40,and lymphotoxin (LT) pathways. Signaling through ICOS has multiple consequences,including cytokine production,expression of CD40L on Th cells,and differentiation into CXCR5(+) follicular Th cells,all of which are important in the GC reaction. We have therefore taken advantage of ICOS(-/-) mice to dissect which downstream elements are required to initiate the formation of GC. In the context of a T-dependent immune response,we found that GC B cells from ICOS(-/-) mice express lower levels of LTalphabeta compared with wild-type GC B cells in vivo,and stimulation of ICOS on T cells induces LTalphabeta on B cells in vitro. Administration of agonistic anti-LTbeta receptor Ab was unable to restore the GC response in ICOS(-/-) mice,suggesting that additional input from another pathway is required for optimal GC generation. In contrast,treatment with agonistic anti-CD40 Ab in vivo recovered GC networks and restored LTalphabeta expression on GC B cells in ICOS(-/-) mice,and this effect was dependent on LTbeta receptor signaling. Collectively,these data demonstrate that ICOS activation is a prerequisite for the up-regulation of LTalphabeta on GC B cells in vivo and provide a model for cooperation between ICOS,CD40,and LT pathways in the context of the GC response.
View Publication
文献
Boyer L et al. (MAR 2008)
Journal of immunological methods 332 1-2 82--91
Increased production of megakaryocytes near purity from cord blood CD34+ cells using a short two-phase culture system.
Expansion of hematopoietic progenitor cells (HPC) ex vivo remains an important focus in fundamental and clinical research. The aim of this study was to determine whether the implementation of such expansion phase in a two-phase culture strategy prior to the induction of megakaryocyte (Mk) differentiation would increase the yield of Mks produced in cultures. Toward this end,we first characterized the functional properties of five cytokine cocktails to be tested in the expansion phase on the growth and differentiation kinetics of CD34+-enriched cells,and on their capacity to expand clonogenic progenitors in cultures. Three of these cocktails were chosen based on their reported ability to induce HPC expansion ex vivo,while the other two represented new cytokine combinations. These analyses revealed that none of the cocktails tested could prevent the differentiation of CD34+ cells and the rapid expansion of lineage-positive cells. Hence,we sought to determine the optimum length of time for the expansion phase that would lead to the best final Mk yields. Despite greater expansion of CD34+ cells and overall cell growth with a longer expansion phase,the optimal length for the expansion phase that provided greater Mk yield at near maximal purity was found to be 5 days. Under such settings,two functionally divergent cocktails were found to significantly increase the final yield of Mks. Surprisingly,these cocktails were either deprived of thrombopoietin or of stem cell factor,two cytokines known to favor megakaryopoiesis and HPC expansion,respectively. Based on these results,a short resource-efficient two-phase culture protocol for the production of Mks near purity (textgreater95%) from human CD34+ CB cells has been established.
View Publication
文献
Crist SA et al. (APR 2008)
Blood 111 7 3553--61
Nuclear factor of activated T cells (NFAT) mediates CD154 expression in megakaryocytes.
Platelets are an abundant source of CD40 ligand (CD154),an immunomodulatory and proinflammatory molecule implicated in the onset and progression of several inflammatory diseases,including systemic lupus erythematosus (SLE),diabetes,and cardiovascular disease. Heretofore considered largely restricted to activated T cells,we initiated studies to investigate the source and regulation of platelet-associated CD154. We found that CD154 is abundantly expressed in platelet precursor cells,megakaryocytes. We show that CD154 is expressed in primary human CD34+ and murine hematopoietic precursor cells only after cytokine-driven megakaryocyte differentiation. Furthermore,using several established megakaryocyte-like cells lines,we performed promoter analysis of the CD154 gene and found that NFAT,a calcium-dependent transcriptional regulator associated with activated T cells,mediated both differentiation-dependent and inducible megakaryocyte-specific CD154 expression. Overall,these data represent the first investigation of the regulation of a novel source of CD154 and suggests that platelet-associated CD154 can be biochemically modulated.
View Publication
文献
Simons MP et al. (MAR 2008)
Journal of leukocyte biology 83 3 621--9
TNF-related apoptosis-inducing ligand (TRAIL) is expressed throughout myeloid development, resulting in a broad distribution among neutrophil granules.
TRAIL induces apoptosis in a variety of tumor cells. Our laboratory found that human neutrophils contain an intracellular reservoir of prefabricated TRAIL that is released after stimulation with Mycobacterium bovis bacillus Calmette-Guérin. In this study,we examined the subcellular distribution of TRAIL in freshly isolated neutrophils. Neutrophil granules,secretory vesicles (SV),and plasma membrane vesicles were isolated by subcellular fractionation,followed by free-flow electrophoresis,and examined by ELISA and immunoblot. TRAIL was found in all membrane-bound fractions with the highest amounts in the fractions enriched in azurophilic granule (AG) and SV. Immunofluorescence confocal microscopy showed that TRAIL colocalized independently with myeloperoxidase (MPO),lactoferrin (LF),and albumin,respective markers of AG,specific granules,and SV. Furthermore,immunotransmission electron microscopy demonstrated that TRAIL colocalized intracellularly with MPO and albumin. We examined TRAIL expression in PLB-985 cells induced with dimethylformamide and in CD34-positive stem cells treated with G-CSF. Quantitative RT-PCR analysis showed that TRAIL was expressed in each stage of development,whereas MPO and LF were only expressed at distinct times during differentiation. Collectively,these findings suggest that TRAIL is expressed throughout neutrophil development,resulting in a broad distribution among different granule subtypes.
View Publication
文献
Spaggiari GM et al. (FEB 2008)
Blood 111 3 1327--33
Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2.
Recently,a number of clinical trials used either mesenchymal stem cells (MSCs) or natural killer (NK) cells in an attempt to improve the effectiveness of hematopoietic stem cell transplantation (HSCT). In view of the relevant role of both MSCs and NK cells in HSCT,we have recently explored the result of possible interactions between the 2 cell types. We found that activated NK cells could kill MSCs,whereas MSCs strongly inhibited interleukin-2 (IL-2)-induced NK-cell proliferation. In this study,we further analyzed the inhibitory effect exerted by MSCs on NK cells. We show that MSCs not only inhibit the cytokine-induced proliferation of freshly isolated NK cells but also prevent the induction of effector functions,such as cytotoxic activity and cytokine production. Moreover,we show that this inhibitory effect is related to a sharp down-regulation of the surface expression of the activating NK receptors NKp30,NKp44,and NKG2D. Finally,we demonstrate that indoleamine 2,3-dioxygenase and prostaglandin E2 represent key mediators of the MSC-induced inhibition of NK cells.
View Publication
文献
Girart M et al. (SEP 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 6 3472--9
Engagement of TLR3, TLR7, and NKG2D regulate IFN-gamma secretion but not NKG2D-mediated cytotoxicity by human NK cells stimulated with suboptimal doses of IL-12.
NK cells express different TLRs,such as TLR3,TLR7,and TLR9,but little is known about their role in NK cell stimulation. In this study,we used specific agonists (poly(I:C),loxoribine,and synthetic oligonucleotides containing unmethylated CpG sequences to stimulate human NK cells without or with suboptimal doses of IL-12,IL-15,or IFN-alpha,and investigated the secretion of IFN-gamma,cytotoxicity,and expression of the activating receptor NKG2D. Poly(I:C) and loxoribine,in conjunction with IL-12,but not IL-15,triggered secretion of IFN-gamma. Inhibition of IFN-gamma secretion by chloroquine suggested that internalization of the TLR agonists was necessary. Also,secretion of IFN-gamma was dependent on MEK1/ERK,p38 MAPK,p70(S6) kinase,and NF-kappaB,but not on calcineurin. IFN-alpha induced a similar effect,but promoted lesser IFN-gamma secretion. However,cytotoxicity (51Cr release assays) against MHC class I-chain related A (MICA)- and MICA+ tumor targets remained unchanged,as well as the expression of the NKG2D receptor. Excitingly,IFN-gamma secretion was significantly increased when NK cells were stimulated with poly(I:C) or loxoribine and IL-12,and NKG2D engagement was induced by coculture with MICA+ tumor cells in a PI3K-dependent manner. We conclude that resting NK cells secrete high levels of IFN-gamma in response to agonists of TLR3 or TLR7 and IL-12,and this effect can be further enhanced by costimulation through NKG2D. Hence,integration of the signaling cascades that involve TLR3,TLR7,IL-12,and NKG2D emerges as a critical step to promote IFN-gamma-dependent NK cell-mediated effector functions,which could be a strategy to promote Th1-biased immune responses in pathological situations such as cancer.
View Publication