Muntasell A et al. (JUN 2010)
Blood 115 25 5170--9
Inhibition of NKG2D expression in NK cells by cytokines secreted in response to human cytomegalovirus infection.
The NKG2D receptor activates natural killer (NK) cell cytotoxicity and cytokine production on recognition of self-molecules induced by cellular stress under different conditions such as viral infections. The importance of NKG2D in the immune response to human cytomegalovirus (HCMV) is supported by the identification of several viral molecules that prevent the expression of NKG2D ligands by infected cells. In this study we report that,paradoxically,a significant,selective,and transient reduction of NKG2D expression on NK cells is detected during HCMV infection of peripheral blood mononuclear cells if needed. Antagonizing type I interferon (IFN),interleukin-12 (IL-12),and IFNgamma prevented HCMV-induced down-regulation of surface NKG2D. Moreover,treatment of purified NK cells with recombinant IFNbeta1 and IL-12 mimicked the effect,supporting a direct role of these cytokines in regulating NKG2D surface expression in NK cells. The loss of NKG2D expression selectively impaired NK-cell cytotoxicity against cells expressing NKG2D ligands but preserved the response triggered through other activating receptors. These results support that down-regulation of NKG2D expression on NK cells by cytokines with a key role in antiviral immune response may constitute a physiologic mechanism to control NK-cell reactivity against normal cells expressing NKG2D ligands in the context of inflammatory responses to viral infections.
View Publication
文献
Krummen M et al. (JUL 2010)
Journal of leukocyte biology 88 1 189--99
Release of IL-12 by dendritic cells activated by TLR ligation is dependent on MyD88 signaling, whereas TRIF signaling is indispensable for TLR synergy.
Recently,it has been shown that certain combinations of TLR ligands act in synergy to induce the release of IL-12 by DCs. In this study,we sought to define the critical parameters underlying TLR synergy. Our data show that TLR ligands act synergistically if MyD88- and TRIF-dependent ligands are combined. TLR4 uses both of these adaptor molecules,thus activation via TLR4 proved to be a synergistic event on its own. TLR synergy did not affect all aspects of DC activation but enhanced primarily the release of certain cytokines,particularly IL-12,whereas the expression of costimulatory molecules remained unchanged. Consequently,synergistic activation of DC did not affect their ability to induce T cell proliferation but resulted in T(H)1-biased responses in vitro and in vivo. Furthermore,we examined the impact of TLR ligand combinations on primary DC in vitro but observed only modest effects with a combination of CpG + Poly (I:C). However,noticeable synergy in terms of IL-12 production by DCs was detectable in vivo after systemic administration of CpG + Poly (I:C). Finally,we show that synergy is partially dependent on IFNAR signaling but does not require the release of IFNs to the enviroment,suggesting an autocrine action of type I IFNs.
View Publication
文献
Megjugorac NJ et al. (MAY 2010)
Blood 115 21 4185--90
IL-4 enhances IFN-lambda1 (IL-29) production by plasmacytoid DCs via monocyte secretion of IL-1Ra.
The type-III interferon (IFN) family is composed of 3 molecules in humans: IFN-lambda1 (interleukin-29 [IL-29]),IFN-lambda2 (IL-28A),and IFN-lambda3 (IL-28B),each of which signals through the same receptor complex. Plasmacytoid dendritic cells (pDCs) are major IFN-lambda producers among peripheral lymphocytes. Recently,it has been shown that IFN-lambda1 exerts a powerful inhibitory effect over the T-helper 2 (Th2) response by antagonizing the effect of IL-4 on CD4(+) T cells and inhibiting the production of Th2-associated cytokines. Here,we asked whether Th2 cytokines exert reciprocal control over IFN-lambda production. IL-4 treatment during stimulation of human peripheral lymphocytes significantly elevated IFN-lambda1 transcription and secretion. However,pDCs were not directly responsive to IL-4. Using depletion and reconstitution experiments,we showed that IL-4-responsive monocytes are an intermediary cell,responding to IL-4 by elevating their secretion of IL-1 receptor antagonist (IL-Ra); this IL-1Ra acts on pDCs to elevate their IFN-lambda1 output. Thus,our experiments revealed a novel mechanism for regulation of both IFN-lambda1 production and pDC function,and suggests an expanded immunomodulatory role for Th2-associated cytokines.
View Publication
文献
Isnardi I et al. (JUN 2010)
Blood 115 24 5026--36
Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clones.
Complement receptor 2-negative (CR2/CD21(-)) B cells have been found enriched in patients with autoimmune diseases and in common variable immunodeficiency (CVID) patients who are prone to autoimmunity. However,the physiology of CD21(-/lo) B cells remains poorly characterized. We found that some rheumatoid arthritis (RA) patients also display an increased frequency of CD21(-/lo) B cells in their blood. A majority of CD21(-/lo) B cells from RA and CVID patients expressed germline autoreactive antibodies,which recognized nuclear and cytoplasmic structures. In addition,these B cells were unable to induce calcium flux,become activated,or proliferate in response to B-cell receptor and/or CD40 triggering,suggesting that these autoreactive B cells may be anergic. Moreover,gene array analyses of CD21(-/lo) B cells revealed molecules specifically expressed in these B cells and that are likely to induce their unresponsive stage. Thus,CD21(-/lo) B cells contain mostly autoreactive unresponsive clones,which express a specific set of molecules that may represent new biomarkers to identify anergic B cells in humans.
View Publication
文献
Streetly MJ et al. (MAY 2010)
Blood 115 19 3939--48
GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death.
GCS-100 is a galectin-3 antagonist with an acceptable human safety profile that has been demonstrated to have an antimyeloma effect in the context of bortezomib resistance. In the present study,the mechanisms of action of GCS-100 are elucidated in myeloma cell lines and primary tumor cells. GCS-100 induced inhibition of proliferation,accumulation of cells in sub-G(1) and G(1) phases,and apoptosis with activation of both caspase-8 and -9 pathways. Dose- and time-dependent decreases in MCL-1 and BCL-X(L) levels also occurred,accompanied by a rapid induction of NOXA protein,whereas BCL-2,BAX,BAK,BIM,BAD,BID,and PUMA remained unchanged. The cell-cycle inhibitor p21(Cip1) was up-regulated by GCS-100,whereas the procycling proteins CYCLIN E2,CYCLIN D2,and CDK6 were all reduced. Reduction in signal transduction was associated with lower levels of activated IkappaBalpha,IkappaB kinase,and AKT as well as lack of IkappaBalpha and AKT activation after appropriate cytokine stimulation (insulin-like growth factor-1,tumor necrosis factor-alpha). Primary myeloma cells showed a direct reduction in proliferation and viability. These data demonstrate that the novel therapeutic molecule,GCS-100,is a potent modifier of myeloma cell biology targeting apoptosis,cell cycle,and intracellular signaling and has potential for myeloma therapy.
View Publication
文献
Crane CA et al. (JAN 2010)
Neuro-oncology 12 1 7--13
TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients.
The activating receptor NKG2D,expressed by natural killer (NK) cells and CD8(+) T cells,has a role in the specific killing of transformed cells. We examined NKG2D expression in patients with glioblastoma multiforme and found that NKG2D was downregulated on NK cells and CD8(+) T cells. Expression of NKG2D on lymphocytes significantly increased following tumor resection and correlated with an increased ability to kill NKG2D ligand-positive tumor targets. Despite the presence of soluble NKG2D ligands in the sera of glioblastoma patients,NKG2D downregulation was primarily caused by tumor-derived tumor growth factor-beta,suggesting that blocking of this cytokine may have therapeutic benefit.
View Publication
文献
Parish ST et al. (MAR 2010)
Journal of immunology (Baltimore,Md. : 1950) 184 6 2847--54
Adenosine deaminase modulation of telomerase activity and replicative senescence in human CD8 T lymphocytes.
Increased proportions of CD8 T lymphocytes lacking expression of the CD28 costimulatory receptor have been documented during both aging and chronic infection with HIV-1,and their abundance correlates with numerous deleterious clinical outcomes. CD28-negative cells also arise in cell cultures of CD8(+)CD28(+) following multiple rounds of Ag-driven proliferation,reaching the end stage of replicative senescence. The present study investigates the role of a second T cell costimulatory receptor component,adenosine deaminase (ADA),on the process of replicative senescence. We had previously reported that CD28 signaling is required for optimal telomerase upregulation. In this study,we show that the CD8(+)CD28(+) T lymphocytes that are ADA(+) have significantly greater telomerase activity than those that do not express ADA and that ADA is progressively lost as cultures progress to senescence. Because ADA converts adenosine to inosine,cells lacking this enzyme might be subject to prolonged exposure to adenosine,which has immunosuppressive effects. Indeed,we show that chronic exposure of CD8 T lymphocytes to exogenous adenosine accelerates the process of replicative senescence,causing a reduction in overall proliferative potential,reduced telomerase activity,and blunted IL-2 gene transcription. The loss of CD28 expression was accelerated,in part due to adenosine-induced increases in constitutive caspase-3,known to act on the CD28 promoter. These findings provide the first evidence for a role of ADA in modulating the process of replicative senescence and suggest that strategies to enhance this enzyme may lead to novel therapeutic approaches for pathologies associated with increases in senescent CD8 T lymphocytes.
View Publication
文献
Diou J et al. (MAR 2010)
Journal of immunology (Baltimore,Md. : 1950) 184 6 2899--907
Dendritic cells derived from hemozoin-loaded monocytes display a partial maturation phenotype that promotes HIV-1 trans-infection of CD4+ T cells and virus replication.
Coinfection of HIV-1 patients with Plasmodium falciparum,the etiological agent of malaria,results in a raise of viral load and an acceleration of disease progression. The primary objective of this study was to investigate whether the malarial pigment hemozoin (HZ),a heme by-product of hemoglobin digestion by malaria parasites,can affect HIV-1 transmission by monocytes-derived dendritic cells (DCs) to CD4(+) T cells when HZ is initially internalized in monocytes before their differentiation in DCs. We demonstrate in this study that HZ treatment during the differentiation process induces an intermediate maturation phenotype when compared with immature and fully mature DCs. Furthermore,the DC-mediated transfer of HIV-1 is enhanced in presence of HZ,a phenomenon that may be linked with the capacity of HZ-loaded cells to interact and activate CD4(+) T cells. Altogether our findings suggest a new mechanism that could partially explain the increased HIV-1 virus production during a coinfection with P. falciparum. Understanding the multifaceted interactions between P. falciparum and HIV-1 is an important challenge that could lead to the development of new treatment strategies.
View Publication
文献
Billerbeck E et al. (FEB 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 7 3006--11
Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties.
CD8(+) T lymphocytes play a key role in host defense,in particular against important persistent viruses,although the critical functional properties of such cells in tissue are not fully defined. We have previously observed that CD8(+) T cells specific for tissue-localized viruses such as hepatitis C virus express high levels of the C-type lectin CD161. To explore the significance of this,we examined CD8(+)CD161(+) T cells in healthy donors and those with hepatitis C virus and defined a population of CD8(+) T cells with distinct homing and functional properties. These cells express high levels of CD161 and a pattern of molecules consistent with type 17 differentiation,including cytokines (e.g.,IL-17,IL-22),transcription factors (e.g.,retinoic acid-related orphan receptor gamma-t,P = 6 x 10(-9); RUNX2,P = 0.004),cytokine receptors (e.g.,IL-23R,P = 2 x 10(-7); IL-18 receptor,P = 4 x 10(-6)),and chemokine receptors (e.g.,CCR6,P = 3 x 10(-8); CXCR6,P = 3 x 10(-7); CCR2,P = 4 x 10(-7)). CD161(+)CD8(+) T cells were markedly enriched in tissue samples and coexpressed IL-17 with high levels of IFN-gamma and/or IL-22. The levels of polyfunctional cells in tissue was most marked in those with mild disease (P = 0.0006). These data define a T cell lineage that is present already in cord blood and represents as many as one in six circulating CD8(+) T cells in normal humans and a substantial fraction of tissue-infiltrating CD8(+) T cells in chronic inflammation. Such cells play a role in the pathogenesis of chronic hepatitis and arthritis and potentially in other infectious and inflammatory diseases of man.
View Publication
文献
Kerns HM et al. (MAR 2010)
Blood 115 11 2146--55
B cell-specific lentiviral gene therapy leads to sustained B-cell functional recovery in a murine model of X-linked agammaglobulinemia.
The immunodeficiency disorder,X-linked agammaglobulinemia (XLA),results from mutations in the gene encoding Bruton tyrosine kinase (Btk). Btk is required for pre-B cell clonal expansion and B-cell antigen receptor signaling. XLA patients lack mature B cells and immunoglobulin and experience recurrent bacterial infections only partially mitigated by life-long antibody replacement therapy. In pursuit of definitive therapy for XLA,we tested ex vivo gene therapy using a lentiviral vector (LV) containing the immunoglobulin enhancer (Emu) and Igbeta (B29) minimal promoter to drive B lineage-specific human Btk expression in Btk/Tec(-/-) mice,a strain that reproduces the features of human XLA. After transplantation of EmuB29-Btk-LV-transduced stem cells,treated mice showed significant,albeit incomplete,rescue of mature B cells in the bone marrow,peripheral blood,spleen,and peritoneal cavity,and improved responses to T-independent and T-dependent antigens. LV-treated B cells exhibited enhanced B-cell antigen receptor signaling and an in vivo selective advantage in the peripheral versus central B-cell compartment. Secondary transplantation showed sustained Btk expression,viral integration,and partial functional responses,consistent with long-term stem cell marking; and serial transplantation revealed no evidence for cellular or systemic toxicity. These findings strongly support pursuit of B lineage-targeted LV gene therapy in human XLA.
View Publication
文献
Guilliams M et al. (MAR 2010)
Blood 115 10 1958--68
Skin-draining lymph nodes contain dermis-derived CD103(-) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells.
Small intestinal CD103(+) dendritic cells (DCs) have the selective ability to promote de novo generation of regulatory T cells via the production of retinoic acid (RA). Considering that aldehyde dehydrogenase (ALDH) activity controls the production of RA,we used a flow cytometry-based assay to measure ALDH activity at the single-cell level and to perform a comprehensive analysis of the RA-producing DC populations present in lymphoid and nonlymphoid mouse tissues. RA-producing DCs were primarily of the tissue-derived,migratory DC subtype and can be readily found in the skin and in the lungs as well as in their corresponding draining lymph nodes. The RA-producing skin-derived DCs were capable of triggering the generation of regulatory T cells,a finding demonstrating that the presence of RA-producing,tolerogenic DCs is not restricted to the intestinal tract as previously thought. Unexpectedly,the production of RA by skin DCs was restricted to CD103(-) DCs,indicating that CD103 expression does not constitute a universal" marker for RA-producing mouse DCs. Finally�
View Publication
文献
Song Z et al. (JAN 2010)
Clinical cancer research : an official journal of the American Association for Cancer Research 16 2 587--99
Activities of SYK and PLCgamma2 predict apoptotic response of CLL cells to SRC tyrosine kinase inhibitor dasatinib.
PURPOSE: B-cell receptor signaling plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). However,blocking B-cell receptor signaling with dasatinib,an inhibitor of SRC kinase,produced variable results in preclinical and clinical studies. We aim to define the molecular mechanisms underlying the differential dasatinib sensitivity and to uncover more effective therapeutic targets in CLL. EXPERIMENTAL DESIGN: Fresh CLL B cells were treated with dasatinib,and cell viability was followed. The CLL cases were then divided into good and poor responders. The cellular response was correlated with the activities of B-cell receptor signaling molecules,as well as with molecular and cytogenetic prognostic factors. RESULTS: Among 50 CLL cases,dasatinib treatment reduced cell viability by 2% to 90%,with an average reduction of 47% on day 4 of culture. The drug induced CLL cell death through the intrinsic apoptotic pathway mediated by reactive oxygen species. Unexpectedly,phosphorylation of SRC family kinases was inhibited by dasatinib in good,as well as poor,responders. As opposed to SRC family kinases,activities of two downstream molecules,SYK and phospholipase Cgamma2,correlate well with the apoptotic response of CLL cells to dasatinib. CONCLUSIONS: Thus,SYK inhibition predicts cellular response to dasatinib. SYK,together with phospholipase Cgamma2,may serve as potential biomarkers to predict dasatinib therapeutic response in patients. From the pathogenic perspective,our study suggests the existence of alternative mechanisms or pathways that activate SYK,independent of SRC kinase activities. The study further implicates that SYK might serve as a more effective therapeutic target in CLL treatment.
View Publication