Q. H. Sodji et al. (jul 2022)
Cancer research communications 2 7 725--738
The Combination of Radiotherapy and Complement C3a Inhibition Potentiates Natural Killer cell Functions Against Pancreatic Cancer.
Pancreatic cancer is one of the deadliest cancers,against which current immunotherapy strategies are not effective. Herein,we analyzed the immune cell composition of the tumor microenvironment of pancreatic cancer samples in The Cancer Genome Atlas and found that the presence of intratumoral NK cells correlates with survival. Subsequent analysis also indicated that NK cell exclusion from the microenvironment is found in a high percentage of clinical pancreatic cancers and in preclinical models of pancreatic cancer. Mechanistically,NK cell exclusion is regulated in part by complement C3a and its receptor signaling. Inhibition of the C3a receptor enhances NK cell infiltration in syngeneic mouse models of pancreatic cancer resulting in tumor growth delay. However,tumor growth inhibition mediated by NK cells is not sufficient alone for complete tumor regression,but is potentiated when combined with radiation therapy. Our findings indicate that although C3a inhibition is a promising approach to enhance NK cell-based immunotherapy against pancreatic cancer,its combination with radiation therapy hold greater therapeutic benefit.
View Publication
文献
K. Th\ummler et al." ( 2022)
Oncoimmunology 11 1 2104070
Targeting 3D chromosomal architecture at the RANK loci to suppress myeloma-driven osteoclastogenesis.
Bone disease represents a major cause of morbidity and mortality in Multiple Myeloma (MM); primarily driven by osteoclasts whose differentiation is dependent on expression of RANKL by MM cells. Notably,costimulation by ITAM containing receptors (i.e.,Fc$\gamma$R) can also play a crucial role in osteoclast differentiation. Modeling the pathology of the bone marrow microenvironment with an ex vivo culture system of primary human multiple myeloma cells,we herein demonstrate that Fc$\gamma$R-mediated signaling,via staphylococcal protein A (SpA) IgG immune-complexes,can act as a critical negative regulator of MM-driven osteoclast differentiation. Interrogation of the mode-of-action revealed that Fc$\gamma$R-mediated signaling causes epigenetic modulation of chromosomal 3D architecture at the RANK promoter; with altered spatial orientation of a proximal super enhancer. Combined this leads to substantial down-regulation of RANK at a transcript,protein,and functional level. These observations shed light on a novel mechanism regulating RANK expression and provide a rationale for targeting Fc$\gamma$R-signaling for the amelioration of osteolytic bone pathology in disease.
View Publication
文献
M. Jim\'enez-Fern\'andez et al. (aug 2022)
Cellular and molecular life sciences : CMLS 79 8 468
CD69-oxLDL ligand engagement induces Programmed Cell Death 1 (PD-1) expression in human CD4€?+€?T lymphocytes.
The mechanisms that control the inflammatory-immune response play a key role in tissue remodelling in cardiovascular diseases. T cell activation receptor CD69 binds to oxidized low-density lipoprotein (oxLDL),inducing the expression of anti-inflammatory NR4A nuclear receptors and modulating inflammation in atherosclerosis. To understand the downstream T cell responses triggered by the CD69-oxLDL binding,we incubated CD69-expressing Jurkat T cells with oxLDL. RNA sequencing revealed a differential gene expression profile dependent on the presence of CD69 and the degree of LDL oxidation. CD69-oxLDL binding induced the expression of NR4A receptors (NR4A1 and NR4A3),but also of PD-1. These results were confirmed using oxLDL and a monoclonal antibody against CD69 in CD69-expressing Jurkat and primary CD4??+??lymphocytes. CD69-mediated induction of PD-1 and NR4A3 was dependent on NFAT activation. Silencing NR4A3 slightly increased PD-1 levels,suggesting a potential regulation of PD-1 by this receptor. Moreover,expression of PD-1,CD69 and NR4A3 was increased in human arteries with chronic inflammation compared to healthy controls,with a strong correlation between PD-1 and CD69 mRNA expression (r??=??0.655 P???0.0001). Moreover,PD-1 was expressed in areas enriched in CD3 infiltrating T cells. Our results underscore a novel mechanism of PD-1 induction independent of TCR signalling that might contribute to the role of CD69 in the modulation of inflammation and vascular remodelling in cardiovascular diseases.
View Publication
文献
L. Dou et al. (aug 2022)
Allergy,asthma,and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology 18 1 66
miR-3934 regulates the apoptosis and secretion of inflammatory cytokines of basophils via targeting RAGE in asthma.
BACKGROUND Several miRNAs are now known to have clear connections to the pathogenesis of asthma. The present study focused on the potential role of miR-3934 during asthma development. METHODS miR-3934 was detected as a down-regulated miRNA in basophils by sequencing analysis. Next,the expression levels of miR-3934 in peripheral blood mononuclear cells of 50 asthma patients and 50 healthy volunteers were examined by RT-qPCR methods. The basophils were then treated with AGEs and transfected with miR-3934 mimics. The apoptosis levels were examined by flow cytometry assay; and the expression levels of cytokines were detected using the ELISA kits. Finally,the Western blot was performed to examined the expression of key molecules in the TGF-$\beta$/Smad signaling pathway. RESULTS miR-3934 was down-regulated in the basophils of asthmatic patients. The expression of the pro-inflammatory cytokines IL-6,IL-8 and IL-33 was enhanced in basophils from asthmatic patients,and this effect was partially reversed by transfection of miR-3934 mimics. Furthermore,receiver operating characteristics analysis showed that miR-3934 levels can be used to distinguish asthma patients from healthy individuals. miR-3934 partially inhibited advanced glycation end products-induced increases in basophil apoptosis by suppressing expression of RAGE. CONCLUSION Our results indicate that miR-3934 acts to mitigate the pathogenesis of asthma by targeting RAGE and suppressing TGF-$\beta$/Smad signaling.
View Publication
文献
K. F. Boligan et al. (aug 2022)
Current protocols 2 8 e504
Methods to Evaluate the Potential Clinical Significance of Antibodies to Red Blood Cells.
Immune-mediated red blood cell (RBC) destruction due to antibodies is an ongoing problem in transfusion medicine for the selection of the safest blood. Serological testing often revealed incompatibility with donors' RBCs. When this incompatible blood was transfused,destruction was due mostly to extravascular-mediated phagocytosis of the antibody-opsonized RBCs; however,intravascular hemolysis was sometimes observed without explanation. Based on serology,antibodies with potential for clinical sequalae could not be ascertained; thus,antigen-negative blood was usually selected for transfusion to avoid problems. Antibodies to antigens having very high frequency in the general population (>95%),however,made selection of antigen-negative blood difficult and sometimes impossible. Some patients,who were sensitized by previous transfusions or by pregnancy,developed multiple antibodies,again creating a problem for finding compatible blood for transfusion,without the ability to discern which of the antibodies may be clinically irrelevant and ignored. Transfusion medicine scientists began searching for an in vitro means to determine the in vivo outcome of transfusion of blood that was serologically incompatible. Methods such as chemiluminescence,monocyte-macrophage phagocytosis,and antibody-dependent cellular cytotoxicity (ADCC) were described. Over the years,the monocyte monolayer assay (MMA) has emerged as the most reliable in vitro assay for the prediction of the clinical relevance of a given antibody. ADCC has not been fully studied but has the potential to be useful for predicting which antibodies may result in intravascular hemolysis. This article captures the protocols for the implementation and readout of the MMA and ADCC assays for use in predicting the clinical significance of antibodies in a transfusion setting. {\textcopyright} 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Monocyte monolayer assay (MMA) Basic Protocol 2: Antibody-dependent cellular cytotoxicity assay (ADCC).
View Publication
文献
F. Cichocki et al. (dec 2022)
Blood 140 23 2451--2462
Dual antigen-targeted off-the-shelf NK cells show durable response and prevent antigen escape in lymphoma and leukemia.
Substantial numbers of B cell leukemia and lymphoma patients relapse due to antigen loss or heterogeneity after anti-CD19 chimeric antigen receptor (CAR) T cell therapy. To overcome antigen escape and address antigen heterogeneity,we engineered induced pluripotent stem cell-derived NK cells to express both an NK cell-optimized anti-CD19 CAR for direct targeting and a high affinity,non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity. In addition,we introduced a membrane-bound IL-15/IL-15R fusion protein to promote in vivo persistence. These engineered cells,termed iDuo NK cells,displayed robust CAR-mediated cytotoxic activity that could be further enhanced with therapeutic antibodies targeting B cell malignancies. In multiple in vitro and xenogeneic adoptive transfer models,iDuo NK cells exhibited robust anti-lymphoma activity. Furthermore,iDuo NK cells effectively eliminated both CD19+ and CD19- lymphoma cells and displayed a unique propensity for targeting malignant cells over healthy cells that expressed CD19,features not achievable with anti-CAR19 T cells. iDuo NK cells combined with therapeutic antibodies represent a promising approach to prevent relapse due to antigen loss and tumor heterogeneity in patients with B cell malignancies.
View Publication
文献
W. Yang et al. (sep 2022)
Journal of immunology (Baltimore,Md. : 1950) 209 5 896--906
Protein Kinase CK2 Controls CD8+ T Cell Effector and Memory Function during Infection.
Protein kinase CK2 is a serine/threonine kinase composed of two catalytic subunits (CK2$\alpha$ and/or CK2$\alpha$') and two regulatory subunits (CK2$\beta$). CK2 promotes cancer progression by activating the NF-$\kappa$B,PI3K/AKT/mTOR,and JAK/STAT pathways,and also is critical for immune cell development and function. The potential involvement of CK2 in CD8+ T cell function has not been explored. We demonstrate that CK2 protein levels and kinase activity are enhanced upon mouse CD8+ T cell activation. CK2$\alpha$ deficiency results in impaired CD8+ T cell activation and proliferation upon TCR stimulation. Furthermore,CK2$\alpha$ is involved in CD8+ T cell metabolic reprogramming through regulating the AKT/mTOR pathway. Lastly,using a mouse Listeria monocytogenes infection model,we demonstrate that CK2$\alpha$ is required for CD8+ T cell expansion,maintenance,and effector function in both primary and memory immune responses. Collectively,our study implicates CK2$\alpha$ as an important regulator of mouse CD8+ T cell activation,metabolic reprogramming,and differentiation both in vitro and in vivo.
View Publication
文献
N. S. Aboelella et al. (jul 2022)
Journal for immunotherapy of cancer 10 7
Indomethacin-induced oxidative stress enhances death receptor 5 signaling and sensitizes tumor cells to adoptive T-cell therapy.
BACKGROUND Adoptive cell therapy (ACT) using genetically modified T cells has evolved into a promising treatment option for patients with cancer. However,even for the best-studied and clinically validated CD19-targeted chimeric antigen receptor (CAR) T-cell therapy,many patients face the challenge of lack of response or occurrence of relapse. There is increasing need to improve the efficacy of ACT so that durable,curative outcomes can be achieved in a broad patient population. METHODS Here,we investigated the impact of indomethacin (indo),a non-steroidal anti-inflammatory drug (NSAID),on the efficacy of ACT in multiple preclinical models. Mice with established B-cell lymphoma received various combinations of preconditioning chemotherapy,infusion of suboptimal dose of tumor-reactive T cells,and indo administration. Donor T cells used in the ACT models included CD4+ T cells expressing a tumor-specific T cell receptor (TCR) and T cells engineered to express CD19CAR. Mice were monitored for tumor growth and survival. The effects of indo on donor T cell phenotype and function were evaluated. The molecular mechanisms by which indo may influence the outcome of ACT were investigated. RESULTS ACT coupled with indo administration led to improved tumor growth control and prolonged mouse survival. Indo did not affect the activation status and tumor infiltration of the donor T cells. Moreover,the beneficial effect of indo in ACT did not rely on its inhibitory effect on the immunosuppressive cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) axis. Instead,indo-induced oxidative stress boosted the expression of death receptor 5 (DR5) in tumor cells,rendering them susceptible to donor T cells expressing TNF-related apoptosis-inducing ligand (TRAIL). Furthermore,the ACT-potentiating effect of indo was diminished against DR5-deficient tumors,but was amplified by donor T cells engineered to overexpress TRAIL. CONCLUSION Our results demonstrate that the pro-oxidative property of indo can be exploited to enhance death receptor signaling in cancer cells,providing rationale for combining indo with genetically modified T cells to intensify tumor cell killing through the TRAIL-DR5 axis. These findings implicate indo administration,and potentially similar use of other NSAIDs,as a readily applicable and cost-effective approach to augment the efficacy of ACT.
View Publication
文献
T. Ito-Kureha et al. (aug 2022)
Nature immunology 23 8 1208--1221
The function of Wtap in N6-adenosine methylation of mRNAs controls T cell receptor signaling and survival of T cells.
T cell antigen-receptor (TCR) signaling controls the development,activation and survival of T cells by involving several layers and numerous mechanisms of gene regulation. N6-methyladenosine (m6A) is the most prevalent messenger RNA modification affecting splicing,translation and stability of transcripts. In the present study,we describe the Wtap protein as essential for m6A methyltransferase complex function and reveal its crucial role in TCR signaling in mouse T cells. Wtap and m6A methyltransferase functions were required for the differentiation of thymocytes,control of activation-induced death of peripheral T cells and prevention of colitis by enabling gut ROR?t+ regulatory T cell function. Transcriptome and epitranscriptomic analyses reveal that m6A modification destabilizes Orai1 and Ripk1 mRNAs. Lack of post-transcriptional repression of the encoded proteins correlated with increased store-operated calcium entry activity and diminished survival of T cells with conditional genetic inactivation of Wtap. These findings uncover how m6A modification impacts on TCR signal transduction and determines activation and survival of T cells.
View Publication
文献
S. D. Maldonado et al. (aug 2022)
Journal of immunology (Baltimore,Md. : 1950) 209 4 675--683
Human Plasmacytoid Dendritic Cells Express C-Type Lectin Receptors and Attach and Respond to Aspergillus fumigatus.
Plasmacytoid dendritic cells (pDCs) have been implicated as having a role in antifungal immunity,but mechanisms of their interaction with fungi and the resulting cellular responses are not well understood. In this study,we identify the direct and indirect biological response of human pDCs to the fungal pathogen Aspergillus fumigatus and characterize the expression and regulation of antifungal receptors on the pDC surface. Results indicate pDCs do not phagocytose Aspergillus conidia,but instead bind hyphal surfaces and undergo activation and maturation via the upregulation of costimulatory and maturation markers. Measuring the expression of C-type lectin receptors dectin-1,dectin-2,dectin-3,and mannose receptor on human pDCs revealed intermediate expression of each receptor compared with monocytes. The specific dectin-1 agonist curdlan induced pDC activation and maturation in a cell-intrinsic and cell-extrinsic manner. The indirect activation of pDCs by curdlan was much stronger than direct stimulation and was mediated through cytokine production by other PBMCs. Overall,our data indicate pDCs express various C-type lectin receptors,recognize and respond to Aspergillus hyphal Ag,and serve as immune enhancers or modulators in the overarching fungal immune response.
View Publication
文献
M. Benguigui et al. ( 2022)
Frontiers in immunology 13 903591
Myeloid-derived suppressor cells (MDSCs) are known to promote tumor growth in part by their immunosuppressive activities and their angiogenesis support. It has been shown that Bv8 blockade inhibits the recruitment of MDSCs to tumors,thereby delaying tumor relapse associated with resistance to antiangiogenic therapy. However,the impact of Bv8 blockade on tumors resistant to the new immunotherapy drugs based on the blockade of immune checkpoints has not been investigated. Here,we demonstrate that granulocytic-MDSCs (G-MDSCs) are enriched in anti-PD1 resistant tumors. Importantly,resistance to anti-PD1 monotherapy is reversed upon switching to a combined regimen comprised of anti-Bv8 and anti-PD1 antibodies. This effect is associated with a decreased level of G-MDSCs and enrichment of active cytotoxic T cells in tumors. The blockade of anti-Bv8 has shown efficacy also in hyperprogressive phenotype of anti-PD1-treated tumors. In vitro,anti-Bv8 antibodies directly inhibit MDSC-mediated immunosuppression,as evidenced by enhanced tumor cell killing activity of cytotoxic T cells. Lastly,we show that anti-Bv8-treated MDSCs secrete proteins associated with effector immune cell function and T cell activity. Overall,we demonstrate that Bv8 blockade inhibits the immunosuppressive function of MDSCs,thereby enhancing anti-tumor activity of cytotoxic T cells and sensitizing anti-PD1 resistant tumors. Our findings suggest that combining Bv8 blockade with anti-PD1 therapy can be used as a strategy for overcoming therapy resistance.
View Publication
文献
P. Peng et al. ( 2022)
Frontiers in immunology 13 944115
Th1-Dominant CD4+ T Cells Orchestrate Endogenous Systematic Antitumor Immune Memory After Cryo-Thermal Therapy.
Recent studies suggest that highly activated,polyfunctional CD4+ T cells are incredibly effective in strengthening and sustaining overall host antitumor immunity,promoting tumor-specific CD4+ T-cell responses and effectively enhancing antitumor immunity by immunotherapy. Previously,we developed a novel cryo-thermal therapy for local tumor ablation and achieved long-term survival rates in several tumor models. It was discovered that cryo-thermal therapy remodeled the tumor microenvironment and induced an antigen-specific CD4+ T-cell response,which mediated stronger antitumor immunity in vivo. In this study,the phenotype of bulk T cells in spleen was analyzed by flow cytometry after cryo-thermal therapy and both CD4+ Th1 and CD8+ CTL were activated. In addition,by using T-cell depletion,isolation,and adoptive T-cell therapy,it was found that cryo-thermal therapy induced Th1-dominant CD4+ T cells that directly inhibited the growth of tumor cells,promoted the maturation of MDSCs via CD4+ T-cell-derived IFN-? and enhanced the cytotoxic effector function of NK cells and CD8+ T cells,and promoted the maturation of APCs via cell-cell contact and CD4+ T-cell-derived IFN-?. Considering the multiple roles of cryo-thermal-induced Th1-dominant CD4+ T cells in augmenting antitumor immune memory,we suggest that local cryo-thermal therapy is an attractive thermo-immunotherapy strategy to harness host antitumor immunity and has great potential for clinical application.
View Publication