Opyrchal M et al. ( 2014)
International journal of oncology 45 3 1193--1199
Inhibition of Cdk2 kinase activity selectively targets the CD44�?�/CD24�?�/Low stem-like subpopulation and restores chemosensitivity of SUM149PT triple-negative breast cancer cells.
Inflammatory breast cancer (IBC) is an angioinvasive and most aggressive type of advanced breast cancer characterized by rapid proliferation,chemoresistance,early metastatic development and poor prognosis. IBC tumors display a triple-negative breast cancer (TNBC) phenotype characterized by centrosome amplification,high grade of chromosomal instability (CIN) and low levels of expression of estrogen receptor α (ERα),progesterone receptor (PR) and HER-2 tyrosine kinase receptor. Since the TNBC cells lack these receptors necessary to promote tumor growth,common treatments such as endocrine therapy and molecular targeting of HER-2 receptor are ineffective for this subtype of breast cancer. To date,not a single targeted therapy has been approved for non-inflammatory and inflammatory TNBC tumors and combination of conventional cytotoxic chemotherapeutic agents remains the standard therapy. IBC tumors generally display activation of epithelial to mesenchymal transition (EMT) that is functionally linked to a CD44+/CD24-/Low stem-like phenotype. Development of EMT and consequent activation of stemness programming is responsible for invasion,tumor self-renewal and drug resistance leading to breast cancer progression,distant metastases and poor prognosis. In this study,we employed the luminal ER+ MCF-7 and the IBC SUM149PT breast cancer cell lines to establish the extent to which high grade of CIN and chemoresistance were mechanistically linked to the enrichment of CD44+/CD24low/- CSCs. Here,we demonstrate that SUM149PT cells displayed higher CIN than MCF-7 cells characterized by higher percentage of structural and numerical chromosomal aberrations. Moreover,centrosome amplification,cyclin E overexpression and phosphorylation of retinoblastoma (Rb) were restricted to the stem-like CD44+/CD24-/Low subpopulation isolated from SUM149PT cells. Significantly,CD44+/CD24-/Low CSCs displayed resistance to conventional chemotherapy but higher sensitivity to SU9516,a specific cyclin-dependent kinase 2 (Cdk2) inhibitor,demonstrating that aberrant activation of cyclin E/Cdk2 oncogenic signaling is essential for the maintenance and expansion of CD44+/CD24-/Low CSC subpopulation in IBC. In conclusion,our findings propose a novel therapeutic approach to restore chemosensitivity and delay recurrence of IBC tumors based on the combination of conventional chemotherapy with small molecule inhibitors of the Cdk2 cell cycle kinase.
View Publication
文献
Guzman ML et al. (AUG 2014)
Molecular cancer therapeutics 13 8 1979--90
Selective activity of the histone deacetylase inhibitor AR-42 against leukemia stem cells: a novel potential strategy in acute myelogenous leukemia.
Most patients with acute myelogenous leukemia (AML) relapse and die of their disease. Increasing evidence indicates that AML relapse is driven by the inability to eradicate leukemia stem cells (LSC). Thus,it is imperative to identify novel therapies that can ablate LSCs. Using an in silico gene expression-based screen for compounds evoking transcriptional effects similar to the previously described anti-LSC agent parthenolide,we identified AR-42 (OSU-HDAC42),a novel histone deacetylase inhibitor that is structurally similar to phenylbutyrate,but with improved activity at submicromolar concentrations. Here,we report that AR-42 induces NF-κB inhibition,disrupts the ability of Hsp90 to stabilize its oncogenic clients,and causes potent and specific cell death of LSCs but not normal hematopoietic stem and progenitor cells. Unlike parthenolide,the caspase-dependent apoptosis caused by AR-42 occurs without activation of Nrf-2-driven cytoprotective pathways. As AR-42 is already being tested in early clinical trials,we expect that our results can be extended to the clinic.
View Publication
文献
Kolodziej S et al. (MAY 2014)
Nature communications 5 3995
PADI4 acts as a coactivator of Tal1 by counteracting repressive histone arginine methylation.
The transcription factor Tal1 is a critical activator or repressor of gene expression in hematopoiesis and leukaemia. The mechanism by which Tal1 differentially influences transcription of distinct genes is not fully understood. Here we show that Tal1 interacts with the peptidylarginine deiminase IV (PADI4). We demonstrate that PADI4 can act as an epigenetic coactivator through influencing H3R2me2a. At the Tal1/PADI4 target gene IL6ST the repressive H3R2me2a mark triggered by PRMT6 is counteracted by PADI4,which augments the active H3K4me3 mark and thus increases IL6ST expression. In contrast,at the CTCF promoter PADI4 acts as a repressor. We propose that the influence of PADI4 on IL6ST transcription plays a role in the control of IL6ST expression during lineage differentiation of hematopoietic stem/progenitor cells. These results open the possibility to pharmacologically influence Tal1 in leukaemia.
View Publication
文献
Koga C et al. (DEC 2014)
Annals of surgical oncology 21 Suppl 4 4 591--600
Reprogramming Using microRNA-302 Improves Drug Sensitivity in Hepatocellular Carcinoma Cells.
BACKGROUND Although studies have shown that Oct4,Sox2,Klf4,and c-Myc (OKSM)-mediated induced pluripotent stem cell (iPSC) technology sensitizes cancer cells to drugs,the potential risk of inserting c-Myc and random insertions of exogenous sequences into the genome persists. Several authors,including us,have presented microRNA (miRNA)-mediated reprogramming as an alternative approach. Herein,we evaluated the efficacy of miRNA-mediated reprogramming on hepatocellular carcinoma (HCC) cells. METHODS Among three miRNAs (miR-200c,miR-302s,and miR-369s) that were previously presented for miRNA-mediated reprogramming,miR-302 was expressed at low levels in HCC cells. After transfecting three times with miR-302,the cells were incubated in ES medium for 3 weeks and then characterized. RESULTS iPSC-like spheres were obtained after the 3-week incubation. Spheres presented high NANOG and OCT4 expression,low proliferation,high apoptosis,low epithelial-mesenchymal transition marker expression (N-cadherin,TGFBR2),and sensitization to drugs. Several miRNAs were changed (e.g.,low oncomiR miR-21,high miR-29b). cMyc was decreased,and methylation was elevated on histone 3 at lysine 4 (H3K4). Differentiated cells expressed markers of each germ layer (GFAP,FABP4,and ALB). AOF2 (also known as LSD1 or KDM1),one of the targets for miR-302,was repressed in iPSC-like-spheres. Silencing of AOF2 resulted in similar features of iPSC-like-spheres,including cMyc down-regulation and H3K4 methylation. In drug-resistant cells,sensitization was achieved through miR-302-mediated reprogramming. CONCLUSIONS miR-302-mediated iPSC technology reprogrammed HCC cells and improved drug sensitivity through AOF2 down-regulation,which caused H3K4 methylation and c-Myc repression.
View Publication
文献
Chatzouli M et al. ( 2014)
The Journal of Immunology 192 10 4518--4524
Heterogeneous Functional Effects of Concomitant B Cell Receptor and TLR Stimulation in Chronic Lymphocytic Leukemia with Mutated versus Unmutated Ig Genes
We recently reported that chronic lymphocytic leukemia (CLL) subgroups with distinct clonotypic BCRs present discrete patterns of TLR expression,function,and/or tolerance. In this study,to explore whether specific types of BCR/TLR collaboration exist in CLL,we studied the effect of single versus concomitant BCR and/or TLR stimulation on CLL cells from mutated (M-CLL) and unmutated CLL (U-CLL) cases. We stimulated negatively isolated CLL cells by using anti-IgM,imiquimod,and CpG oligodeoxynucleotide for BCR,TLR7,and TLR9,respectively,alone or in combination for different time points. After in vitro culture in the absence of stimulation,differences in p-ERK were identified at any time point,with higher p-ERK levels in U-CLL versus M-CLL. Pronounced p-ERK induction was seen by single stimulation in U-CLL,whereas BCR/TLR synergism was required in
View Publication
文献
Chung S-KK et al. (JUL 2014)
Protein and Cell 5 7 544--551
Functional analysis of the acetylation of human p53 in DNA damage responses
As a critical tumor suppressor,p53 is inactivated in human cancer cells by somatic gene mutation or disruption of pathways required for its activation. Therefore,it is critical to elucidate the mechanism underlying p53 activation after genotoxic and cellular stresses. Accumulating evidence has indicated the importance of posttranslational modifications such as acetylation in regulating p53 stability and activity. However,the physiological roles of the eight identified acetylation events in regulating p53 responses remain to be fully understood. By employing homologous recombination,we introduced various combinations of missense mutations (lysine to arginine) into eight acetylation sites of the endogenous p53 gene in human embryonic stem cells (hESCs). By determining the p53 responses to DNA damage in the p53 knock-in mutant hESCs and their derivatives,we demonstrate physiological importance of the acetylation events within the core domain (K120 and K164) and at the C-terminus (K370/372/373/381/382/386) in regulating human p53 responses to DNA damage.
View Publication
文献
Medina EA et al. (OCT 2014)
Leukemia 28 10 2080--9
PKA/AMPK signaling in relation to adiponectin's antiproliferative effect on multiple myeloma cells.
Obesity increases the risk of developing multiple myeloma (MM). Adiponectin is a cytokine produced by adipocytes,but paradoxically decreased in obesity,that has been implicated in MM progression. Herein,we evaluated how prolonged exposure to adiponectin affected the survival of MM cells as well as putative signaling mechanisms. Adiponectin activates protein kinase A (PKA),which leads to decreased AKT activity and increased AMP-activated protein kinase (AMPK) activation. AMPK,in turn,induces cell cycle arrest and apoptosis. Adiponectin-induced apoptosis may be mediated,at least in part,by the PKA/AMPK-dependent decline in the expression of the enzyme acetyl-CoA-carboxylase (ACC),which is essential to lipogenesis. Supplementation with palmitic acid,the preliminary end product of fatty acid synthesis,rescues MM cells from adiponectin-induced apoptosis. Furthermore,5-(tetradecyloxy)-2-furancarboxylic acid (TOFA),an ACC inhibitor,exhibited potent antiproliferative effects on MM cells that could also be inhibited by fatty acid supplementation. Thus,adiponectin's ability to reduce survival of MM cells appears to be mediated through its ability to suppress lipogenesis. Our findings suggest that PKA/AMPK pathway activators,or inhibitors of ACC,may be useful adjuvants to treat MM. Moreover,the antimyeloma effect of adiponectin supports the concept that hypoadiponectinemia,as occurs in obesity,promotes MM tumor progression.
View Publication
文献
Serra RW et al. (MAR 2014)
eLife 3 3 e02313
A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype.
Approximately 70% of KRAS-positive colorectal cancers (CRCs) have a CpG island methylator phenotype (CIMP) characterized by aberrant DNA hypermethylation and transcriptional silencing of many genes. The factors involved in,and the mechanistic basis of,CIMP is not understood. Among the CIMP genes are the tumor suppressors p14(ARF),p15(INK4B),and p16(INK4A),encoded by the INK4-ARF locus. In this study,we perform an RNA interference screen and identify ZNF304,a zinc-finger DNA-binding protein,as the pivotal factor required for INK4-ARF silencing and CIMP in CRCs containing activated KRAS. In KRAS-positive human CRC cell lines and tumors,ZNF304 is bound at the promoters of INK4-ARF and other CIMP genes. Promoter-bound ZNF304 recruits a corepressor complex that includes the DNA methyltransferase DNMT1,resulting in DNA hypermethylation and transcriptional silencing. KRAS promotes silencing through upregulation of ZNF304,which drives DNA binding. Finally,we show that ZNF304 also directs transcriptional silencing of INK4-ARF in human embryonic stem cells. DOI: http://dx.doi.org/10.7554/eLife.02313.001.
View Publication
文献
Zhao L et al. ( 2014)
International journal of clinical and experimental medicine 7 2 337--347
mTOR inhibitor AZD8055 inhibits proliferation and induces apoptosis in laryngeal carcinoma.
The mammalian target of rapamycin (mTOR) kinase forms two multiprotein complexes,mTORC1 and mTORC2,which regulate cell growth,survival,and autophagy. Allosteric inhibitors of mTORC1,such as rapamycin,have been extensively used to study tumor cell growth,proliferation,and autophagy but have shown only limited clinical utility. Here,we describe AZD8055,a novel ATP-competitive inhibitor of mTOR kinase activity,against all class I phosphatidylinositol3-kinase (PI3K) and other members of the PI3K-like kinase family. The study was to determine the effect of AZD8055 on proliferation and apoptosis on Hep-2,a human laryngeal cancer cell line and to investigate the underlying mechanism(s) of action. Hep-2 cells were treated with AZD8055 for 24,48 or 72 h. MTT was used to determine cell proliferation. Rhodamine 123 and TUNEL staining were used to determine mitochondrial membrane potential and cell apoptosis analyzed by fluorescence-activated cell sorting (FACS). Protein expressions were examined by western blotting. Treatment with AZD8055 inhibited proliferation and induced apoptosis in Hep-2 cells in a dose- and time-dependent manner. During the prolonged treatment with AZD8055,AZD8055 inhibits the mammalian target of rapamycin mTOR. Further experiments showed which signaling cascade p-4EBP1 and substrate EIF4E as well as downstream proteins were down regulated. Furthermore,our study showed that the expression profiles of various BH3-only proteins including Bid,Bad,and Bim,apoptosis regulatory protein cleaved caspase3 was up regulated in a time-dependent manner in Hep-2 cells treated with AZD8055. Thus,in vitro,AZD8055 potently inhibits proliferation and induces apoptosis in head and neck squamous cell carcinoma.
View Publication
文献
Callahan KP et al. (OCT 2014)
Leukemia 28 10 1960--8
Flavaglines target primitive leukemia cells and enhance anti-leukemia drug activity.
Identification of agents that target human leukemia stem cells is an important consideration for the development of new therapies. The present study demonstrates that rocaglamide and silvestrol,closely related natural products from the flavagline class of compounds,are able to preferentially kill functionally defined leukemia stem cells,while sparing normal stem and progenitor cells. In addition to efficacy as single agents,flavaglines sensitize leukemia cells to several anticancer compounds,including front-line chemotherapeutic drugs used to treat leukemia patients. Mechanistic studies indicate that flavaglines strongly inhibit protein synthesis,leading to the reduction of short-lived antiapoptotic proteins. Notably though,treatment with flavaglines,alone or in combination with other drugs,yields a much stronger cytotoxic activity toward leukemia cells than the translational inhibitor temsirolimus. These results indicate that the underlying cell death mechanism of flavaglines is more complex than simply inhibiting general protein translation. Global gene expression profiling and cell biological assays identified Myc inhibition and the disruption of mitochondrial integrity to be features of flavaglines,which we propose contribute to their efficacy in targeting leukemia cells. Taken together,these findings indicate that rocaglamide and silvestrol are distinct from clinically available translational inhibitors and represent promising candidates for the treatment of leukemia.
View Publication
文献
Yang W-T and Zheng P-S (FEB 2014)
PloS one 9 2 e88827
Promoter hypermethylation of KLF4 inactivates its tumor suppressor function in cervical carcinogenesis.
OBJECTIVE The KLF4 gene has been shown to be inactivated in cervical carcinogenesis as a tumor suppressor. However,the mechanism of KLF4 silencing in cervical carcinomas has not yet been identified. DNA methylation plays a key role in stable suppression of gene expression. METHODS The methylation status of the KLF4 promoter CpG islands was analyzed by bisulfite sequencing (BSQ) in tissues of normal cervix and cervical cancer. KLF4 gene expression was detected by RT-PCR,immunohistochemistry and western blot. KLF4 promoter methylation in cervical cancer cell line was determined by BSQ and methylation-specific polymerase chain reaction (MS-PCR). Cell proliferation ability was detected by cell growth curve and MTT assay. RESULTS The methylated allele was found in 41.90% of 24 cervical cancer tissues but only in 11.11% of 11 normal cervix tissues (Ptextless0.005). KLF4 mRNA levels were significantly reduced in cervical cancer tissues compared with normal cervix tissues (Ptextless0.01) and KLF4 mRNA expression showed a significant negative correlation with the promoter hypermethylation (r = -0.486,P = 0.003). Cervical cancer cell lines also showed a significant negative correlation between KLF4 expression and hypermethylation. After treatment with the demethylating agent 5-Azacytidine (5-Aza),the expression of KLF4 in the cervical cancer cell lines at both mRNA and protein levels was drastically increased,the cell proliferation ability was inhibited and the chemosensitivity for cisplatin was significantly increased. CONCLUSION KLF4 gene is inactivated by methylation-induced silencing mechanisms in a large subset of cervical carcinomas and KLF4 promoter hypermethylation inactivates the gene's function as a tumor suppressor in cervical carcinogenesis.
View Publication
文献
Thayanithy V et al. (APR 2014)
Experimental Cell Research 323 1 178--188
Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells
Tunneling nanotubes (TnTs) are long,non-adherent,actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study,we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24-48. h; and this effect was most prominent in media conditions (low-serum,hyperglycemic medium) that support TnT formation (1.3-1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs,in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs,which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation,and also lipid raft formation as a potential biomarker for TnT-forming cells. textcopyright 2014 Elsevier Inc.
View Publication