Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond-Blackfan anemia.
Diamond-Blackfan anemia (DBA) is a broad developmental disease characterized by anemia,bone marrow (BM) erythroblastopenia,and an increased incidence of malignancy. Mutations in ribosomal protein gene S19 (RPS19) are found in approximately 25% of DBA patients; however,the role of RPS19 in the pathogenesis of DBA remains unknown. Using global gene expression analysis,we compared highly purified multipotential,erythroid,and myeloid BM progenitors from RPS19 mutated and control individuals. We found several ribosomal protein genes downregulated in all DBA progenitors. Apoptosis genes,such as TNFRSF10B and FAS,transcriptional control genes,including the erythropoietic transcription factor MYB (encoding c-myb),and translational genes were greatly dysregulated,mostly in diseased erythroid cells. Cancer-related genes,including RAS family oncogenes and tumor suppressor genes,were significantly dysregulated in all diseased progenitors. In addition,our results provide evidence that RPS19 mutations lead to codownregulation of multiple ribosomal protein genes,as well as downregulation of genes involved in translation in DBA cells. In conclusion,the altered expression of cancer-related genes suggests a molecular basis for malignancy in DBA. Downregulation of c-myb expression,which causes complete failure of fetal liver erythropoiesis in knockout mice,suggests a link between RPS19 mutations and reduced erythropoiesis in DBA.
View Publication
文献
Braun BS et al. (SEP 2006)
Blood 108 6 2041--4
Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo.
Somatic activation of a conditional targeted Kras(G12D) allele induces a fatal myeloproliferative disease in mice that closely models juvenile and chronic myelomonocytic leukemia. These mice consistently develop severe and progressive anemia despite adequate numbers of clonogenic erythroid progenitors in the bone marrow and expanded splenic hematopoiesis. Ineffective erythropoiesis is characterized by impaired differentiation. These results demonstrate that endogenous levels of oncogenic Ras have cell lineage-specific effects and support efforts to modulate Ras signaling for therapy of anemia in patients with myelodysplastic syndromes and myeloproliferative disorders.
View Publication
文献
Chan IT et al. (SEP 2006)
Blood 108 5 1708--15
Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease.
Most patients with acute promyelocytic leukemia (APL) express PML-RAR alpha,the fusion product of t(15;17)(q22;q11.2). Transgenic mice expressing PML-RAR alpha develop APL with long latency,low penetrance,and acquired cytogenetic abnormalities. Based on observations that 4% to 10% of APL patients harbor oncogenic ras mutations,we coexpressed oncogenic K-ras from its endogenous promoter with PML-RAR alpha to generate a short-latency,highly penetrant mouse model of APL. The APL disease was characterized by splenomegaly,leukocytosis,extramedullary hematopoiesis (EMH) in spleen and liver with an increased proportion of immature myeloperoxidase-expressing myeloid forms; transplantability to secondary recipients; and lack of cytogenetic abnormalities. Bone marrow cells showed enhanced self-renewal in vitro. This model establishes a role for oncogenic ras in leukemia pathogenesis and thus validates the oncogenic RAS signaling pathway as a potential target for therapeutic inhibition in leukemia patients. This mouse model should be useful for investigating signaling pathways that promote self-renewal in APL and for testing the in vivo efficacy of RAS signaling pathway inhibitors in conjunction with other targeted therapies such as ATRA (all trans retinoic acid) and arsenic trioxide.
View Publication
文献
Wunderlich M et al. (SEP 2006)
Blood 108 5 1690--7
Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability.
The t(16:16) and inv(16) are associated with FAB M4Eo myeloid leukemias and result in fusion of the CBFB gene to the MYH11 gene (encoding smooth muscle myosin heavy chain [SMMHC]). Knockout of CBFbeta causes embryonic lethality due to lack of definitive hematopoiesis. Although knock-in of CBFB-MYH11 is not sufficient to cause disease,expression increases the incidence of leukemia when combined with cooperating events. Although mouse models are valuable tools in the study of leukemogenesis,little is known about the contribution of CBFbeta-SMMHC to human hematopoietic stem and progenitor cell self-renewal. We introduced the CBFbeta-MYH11 cDNA into human CD34+ cells via retroviral transduction. Transduced cells displayed an initial repression of progenitor activity but eventually dominated the culture,resulting in the proliferation of clonal populations for up to 7 months. Long-term cultures displayed a myelomonocytic morphology while retaining multilineage progenitor activity and engraftment in NOD/SCID-B2M-/- mice. Progenitor cells from long-term cultures showed altered expression of genes defining inv(16) identified in microarray studies of human patient samples. This system will be useful in examining the effects of CBFbeta-SMMHC on gene expression in the human preleukemic cell,in characterizing the effect of this oncogene on human stem cell biology,and in defining its contribution to the development of leukemia.
View Publication
文献
Lacout C et al. (SEP 2006)
Blood 108 5 1652--60
JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis.
A JAK2(V617F) mutation is frequently found in several BCR/ABL-negative myeloproliferative disorders. To address the contribution of this mutant to the pathogenesis of these different myeloproliferative disorders,we used an adoptive transfer of marrow cells transduced with a retrovirus expressing JAK2(V617F) in recipient irradiated mice. Hosts were analyzed during the 6 months after transplantation. For a period of 3 months,mice developed polycythemia,macrocytosis and usually peripheral blood granulocytosis. Transient thrombocytosis was only observed in a low-expresser group. All mice displayed trilineage hyperplasia in marrow and spleen along with an amplification of myeloid and erythroid progenitor cells and a formation of endogenous erythroid colonies. After 3 to 4 months,polycythemia regressed,abnormally shaped red blood cells and platelets were seen in circulation,and a deposition of reticulin fibers was observed in marrow and spleen. Development of fibrosis was associated with anemia,thrombocytopenia,high neutrophilia,and massive splenomegaly. These features mimic human polycythemia vera and its evolution toward myelofibrosis. This work demonstrates that JAK2(V617F) is sufficient for polycythemia and fibrosis development and offers an in vivo model to assess novel therapeutic approaches for JAK2(V617F)-positive pathologies. Questions remain regarding the exact contribution of JAK2(V617F) in other myeloproliferative disorders.
View Publication
文献
Ferrari-Amorotti G et al. (AUG 2006)
Blood 108 4 1353--62
Leukemogenesis induced by wild-type and STI571-resistant BCR/ABL is potently suppressed by C/EBPalpha.
Chronic phase-to-blast crisis transition in chronic myelogenous leukemia (CML) is associated with differentiation arrest and down-regulation of C/EBPalpha,a transcription factor essential for granulocyte differentiation. Patients with CML in blast crisis (CML-BC) became rapidly resistant to therapy with the breakpoint cluster region-Abelson murine leukemia (BCR/ABL) kinase inhibitor imatinib (STI571) because of mutations in the kinase domain that interfere with drug binding. We show here that the restoration of C/EBPalpha activity in STI571-sensitive or -resistant 32D-BCR/ABL cells induced granulocyte differentiation,inhibited proliferation in vitro and in mice,and suppressed leukemogenesis. Moreover,activation of C/EBPalpha eradicated leukemia in 4 of 10 and in 6 of 7 mice injected with STI571-sensitive or -resistant 32D-BCR/ABL cells,respectively. Differentiation induction and proliferation inhibition were required for optimal suppression of leukemogenesis,as indicated by the effects of p42 C/EBPalpha,which were more potent than those of K298E C/EBPalpha,a mutant defective in DNA binding and transcription activation that failed to induce granulocyte differentiation. Activation of C/EBPalpha in blast cells from 4 patients with CML-BC,including one resistant to STI571 and BMS-354825 and carrying the T315I Abl kinase domain mutation,also induced granulocyte differentiation. Thus,these data indicate that C/EBPalpha has potent antileukemia effects even in cells resistant to ATP-binding competitive tyrosine kinase inhibitors,and they portend the development of anti-leukemia therapies that rely on C/EBPalpha activation.
View Publication
文献
Wendel H-G et al. (MAY 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 19 7444--9
Loss of p53 impedes the antileukemic response to BCR-ABL inhibition.
Targeted cancer therapies exploit the continued dependence of cancer cells on oncogenic mutations. Such agents can have remarkable activity against some cancers,although antitumor responses are often heterogeneous,and resistance remains a clinical problem. To gain insight into factors that influence the action of a prototypical targeted drug,we studied the action of imatinib (STI-571,Gleevec) against murine cells and leukemias expressing BCR-ABL,an imatinib target and the initiating oncogene for human chronic myelogenous leukemia (CML). We show that the tumor suppressor p53 is selectively activated by imatinib in BCR-ABL-expressing cells as a result of BCR-ABL kinase inhibition. Inactivation of p53,which can accompany disease progression in human CML,impedes the response to imatinib in vitro and in vivo without preventing BCR-ABL kinase inhibition. Concordantly,p53 mutations are associated with progression to imatinib resistance in some human CMLs. Our results identify p53 as a determinant of the response to oncogene inhibition and suggest one way in which resistance to targeted therapy can emerge during the course of tumor evolution.
View Publication
文献
Maes C et al. (MAY 2006)
The Journal of clinical investigation 116 5 1230--42
Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair.
Current therapies for delayed- or nonunion bone fractures are still largely ineffective. Previous studies indicated that the VEGF homolog placental growth factor (PlGF) has a more significant role in disease than in health. Therefore we investigated the role of PlGF in a model of semi-stabilized bone fracture healing. Fracture repair in mice lacking PlGF was impaired and characterized by a massive accumulation of cartilage in the callus,reminiscent of delayed- or nonunion fractures. PlGF was required for the early recruitment of inflammatory cells and the vascularization of the fracture wound. Interestingly,however,PlGF also played a role in the subsequent stages of the repair process. Indeed in vivo and in vitro findings indicated that PlGF induced the proliferation and osteogenic differentiation of mesenchymal progenitors and stimulated cartilage turnover by particular MMPs. Later in the process,PlGF was required for the remodeling of the newly formed bone by stimulating osteoclast differentiation. As PlGF expression was increased throughout the process of bone repair and all the important cell types involved expressed its receptor VEGFR-1,the present data suggest that PlGF is required for mediating and coordinating the key aspects of fracture repair. Therefore PlGF may potentially offer therapeutic advantages for fracture repair.
View Publication
文献
Jamieson CHM et al. (APR 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 16 6224--9
The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation.
Although a large proportion of patients with polycythemia vera (PV) harbor a valine-to-phenylalanine mutation at amino acid 617 (V617F) in the JAK2 signaling molecule,the stage of hematopoiesis at which the mutation arises is unknown. Here we isolated and characterized hematopoietic stem cells (HSC) and myeloid progenitors from 16 PV patient samples and 14 normal individuals,testing whether the JAK2 mutation could be found at the level of stem or progenitor cells and whether the JAK2 V617F-positive cells had altered differentiation potential. In all PV samples analyzed,there were increased numbers of cells with a HSC phenotype (CD34+CD38-CD90+Lin-) compared with normal samples. Hematopoietic progenitor assays demonstrated that the differentiation potential of PV was already skewed toward the erythroid lineage at the HSC level. The JAK2 V617F mutation was detectable within HSC and their progeny in PV. Moreover,the aberrant erythroid potential of PV HSC was potently inhibited with a JAK2 inhibitor,AG490.
View Publication
文献
Coleman TR et al. (APR 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 15 5965--70
Cytoprotective doses of erythropoietin or carbamylated erythropoietin have markedly different procoagulant and vasoactive activities.
Recombinant human erythropoietin (rhEPO) is receiving increasing attention as a potential therapy for prevention of injury and restoration of function in nonhematopoietic tissues. However,the minimum effective dose required to mimic and augment these normal paracrine functions of erythropoietin (EPO) in some organs (e.g.,the brain) is higher than for treatment of anemia. Notably,a dose-dependent risk of adverse effects has been associated with rhEPO administration,especially in high-risk groups,including polycythemia-hyperviscosity syndrome,hypertension,and vascular thrombosis. Of note,several clinical trials employing relatively high dosages of rhEPO in oncology patients were recently halted after an increase in mortality and morbidity,primarily because of thrombotic events. We recently identified a heteromeric EPO receptor complex that mediates tissue protection and is distinct from the homodimeric receptor responsible for the support of erythropoiesis. Moreover,we developed receptor-selective ligands that provide tools to assess which receptor isoform mediates which biological consequence of rhEPO therapy. Here,we demonstrate that rhEPO administration in the rat increases systemic blood pressure,reduces regional renal blood flow,and increases platelet counts and procoagulant activities. In contrast,carbamylated rhEPO,a heteromeric receptor-specific ligand that is fully tissue protective,increases renal blood flow,promotes sodium excretion,reduces injury-induced elevation in procoagulant activity,and does not effect platelet production. These preclinical findings suggest that nonerythropoietic tissue-protective ligands,which appear to elicit fewer adverse effects,may be especially useful in clinical settings for tissue protection.
View Publication
文献
Chen W et al. (JUL 2006)
Blood 108 2 669--77
A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy.
The 2 most frequent human MLL hematopoietic malignancies involve either AF4 or AF9 as fusion partners; each has distinct biology but the role of the fusion partner is not clear. We produced Mll-AF4 knock-in (KI) mice by homologous recombination in embryonic stem cells and compared them with Mll-AF9 KI mice. Young Mll-AF4 mice had lymphoid and myeloid deregulation manifest by increased lymphoid and myeloid cells in hematopoietic organs. In vitro,bone marrow cells from young mice formed unique mixed pro-B lymphoid (B220(+)CD19(+)CD43(+)sIgM(-),PAX5(+),TdT(+),IgH rearranged)/myeloid (CD11b/Mac1(+),c-fms(+),lysozyme(+)) colonies when grown in IL-7- and Flt3 ligand-containing media. Mixed lymphoid/myeloid hyperplasia and hematologic malignancies (most frequently B-cell lymphomas) developed in Mll-AF4 mice after prolonged latency; long latency to malignancy indicates that Mll-AF4-induced lymphoid/myeloid deregulation alone is insufficient to produce malignancy. In contrast,young Mll-AF9 mice had predominately myeloid deregulation in vivo and in vitro and developed myeloid malignancies. The early onset of distinct mixed lymphoid/myeloid lineage deregulation in Mll-AF4 mice shows evidence for both instructive" and "noninstructive" roles for AF4 and AF9 as partners in MLL fusion genes. The molecular basis for "instruction" and secondary cooperating mutations can now be studied in our Mll-AF4 model."
View Publication
文献
Wernig G et al. (JUN 2006)
Blood 107 11 4274--81
Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model.
An acquired somatic mutation,Jak2V617F,was recently discovered in most patients with polycythemia vera (PV),chronic idiopathic myelofibrosis (CIMF),and essential thrombocythemia (ET). To investigate the role of this mutation in vivo,we transplanted bone marrow (BM) transduced with a retrovirus expressing either Jak2 wild-type (wt) or Jak2V617F into lethally irradiated syngeneic recipient mice. Expression of Jak2V617F,but not Jak2wt,resulted in clinicopathologic features that closely resembled PV in humans. These included striking elevation in hemoglobin level/hematocrit,leukocytosis,megakaryocyte hyperplasia,extramedullary hematopoiesis resulting in splenomegaly,and reticulin fibrosis in the bone marrow. Histopathologic and flow cytometric analyses showed an increase in maturing myeloid lineage progenitors,although megakaryocytes showed decreased polyploidization and staining for acetylcholinesterase. In vitro analysis of primary cells showed constitutive activation of Stat5 and cytokine-independent growth of erythroid colony-forming unit (CFU-E) and erythropoietin hypersensitivity,and Southern blot analysis for retroviral integration indicated that the disease was oligoclonal. Furthermore,we observed strain-specific differences in phenotype,with Balb/c mice demonstrating markedly elevated leukocyte counts,splenomegaly,and reticulin fibrosis compared with C57Bl/6 mice. We conclude that Jak2V617F expression in bone marrow progenitors results in a PV-like syndrome with myelofibrosis and that there are strain-specific modifiers that may in part explain phenotypic pleiotropy of Jak2V617F-associated myeloproliferative disease in humans.
View Publication