CRISPR-cas-mediated targeted genome editing in human cells
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems have evolved as an adaptive surveillance and defense mechanism in bacteria and archaea that uses short RNAs to direct degradation of foreign genetic elements. Here,we present our protocol for utilizing the S. pyogenes type II bacterial CRISPR system to achieve sequence-specific genome alterations in human cells. In principle,any genomic sequence of the form N(19)NGG can be targeted with the generation of custom guide RNA (gRNA) which functions to direct the Cas9 protein to genomic targets and induce DNA cleavage. Here,we describe our methods for designing and generating gRNA expression constructs either singly or in a multiplexed manner,as well as optimized protocols for the delivery of Cas9-gRNA components into human cells. Genomic alterations at the target site are then introduced either through nonhomologous end joining (NHEJ) or through homologous recombination (HR) in the presence of an appropriate donor sequence. This RNA-guided editing tool offers greater ease of customization and synthesis in comparison to existing sequence-specific endonucleases and promises to become a highly versatile and multiplexable human genome engineering platform.
View Publication
文献
Bartel MA and Schaffer DV ( 2014)
1114 169--179
Enhanced gene targeting of adult and pluripotent stem cells using evolved adeno-Associated virus
Efficient approaches for the precise genetic engineering of stem cells can enhance both basic and applied stem cell research. Adeno-associated virus (AAV) vectors have demonstrated high-efficiency gene delivery and gene targeting to numerous cell types,and AAV vectors developed specifically for gene delivery to stem cells have further increased gene targeting frequency compared to plasmid construct techniques. This chapter details the production and purification techniques necessary to generate adeno-associated viral vectors for use in high-efficiency gene targeting of adult or pluripotent stem cell applications. Culture conditions used to achieve high gene targeting frequencies in rat neural stem cells and human pluripotent stem cells are also described.
View Publication
文献
Howden SE and Thomson JA ( 2014)
1114 37--55
Gene targeting of human pluripotent stem cells by homologous recombination.
The ability of human embryonic stem cells and induced pluripotent stem cells to differentiate into all adult cell types greatly facilitates the study of human development,disease pathogenesis,and the generation of screening systems to identify novel therapeutic agents. Autologous cell therapies based on patient-derived induced pluripotent stem cells also hold great promise for the treatment and correction of many inherited and acquired diseases. The full potential of human pluripotent stem cells can be unleashed by genetically modifying a chosen locus with minimal impact on the remaining genome,which can be achieved by targeting genes by homologous recombination. This chapter will describe a protocol for gene modification of pluripotent stem cells by homologous recombination and several methods for the screening and identification of successfully modified clones.
View Publication
文献
Yang W-T and Zheng P-S (FEB 2014)
PloS one 9 2 e88827
Promoter hypermethylation of KLF4 inactivates its tumor suppressor function in cervical carcinogenesis.
OBJECTIVE The KLF4 gene has been shown to be inactivated in cervical carcinogenesis as a tumor suppressor. However,the mechanism of KLF4 silencing in cervical carcinomas has not yet been identified. DNA methylation plays a key role in stable suppression of gene expression. METHODS The methylation status of the KLF4 promoter CpG islands was analyzed by bisulfite sequencing (BSQ) in tissues of normal cervix and cervical cancer. KLF4 gene expression was detected by RT-PCR,immunohistochemistry and western blot. KLF4 promoter methylation in cervical cancer cell line was determined by BSQ and methylation-specific polymerase chain reaction (MS-PCR). Cell proliferation ability was detected by cell growth curve and MTT assay. RESULTS The methylated allele was found in 41.90% of 24 cervical cancer tissues but only in 11.11% of 11 normal cervix tissues (Ptextless0.005). KLF4 mRNA levels were significantly reduced in cervical cancer tissues compared with normal cervix tissues (Ptextless0.01) and KLF4 mRNA expression showed a significant negative correlation with the promoter hypermethylation (r = -0.486,P = 0.003). Cervical cancer cell lines also showed a significant negative correlation between KLF4 expression and hypermethylation. After treatment with the demethylating agent 5-Azacytidine (5-Aza),the expression of KLF4 in the cervical cancer cell lines at both mRNA and protein levels was drastically increased,the cell proliferation ability was inhibited and the chemosensitivity for cisplatin was significantly increased. CONCLUSION KLF4 gene is inactivated by methylation-induced silencing mechanisms in a large subset of cervical carcinomas and KLF4 promoter hypermethylation inactivates the gene's function as a tumor suppressor in cervical carcinogenesis.
View Publication
文献
Richter A et al. (MAR 2014)
Stem Cells 32 3 636--648
BMP4 promotes EMT and mesodermal commitment in human embryonic stem cells via SLUG and MSX2
Bone morphogenetic proteins (BMPs) initiate differentiation in human embryonic stem cells (hESCs) but the exact mechanisms have not been fully elucidated. We demonstrate here that SLUG and MSX2,transcription factors involved in epithelial-mesenchymal transitions,essential features of gastrulation in development and tumor progression,are important mediators of BMP4-induced differentiation in hESCs. Phosphorylated Smad1/5/8 colocalized with the SLUG protein at the edges of hESC colonies where differentiation takes place. The upregulation of the BMP target SLUG was direct as shown by the binding of phosphorylated Smad1/5/8 to its promoter,which interrupted the formation of adhesion proteins,resulting in migration. Knockdown of SLUG by short hairpin RNA blocked these changes,confirming an important role for SLUG in BMP-mediated mesodermal differentiation. Furthermore,BMP4-induced MSX2 expression leads to mesoderm formation and then preferential differentiation toward the cardiovascular lineage.
View Publication
文献
Kim JJ et al. (JUN 2014)
Stem Cells 32 6 1468--1479
Discovery of consensus gene signature and intermodular connectivity defining self-renewal of human embryonic stem cells
Molecular markers defining self-renewing pluripotent embryonic stem cells (ESCs) have been identified by relative comparisons between undifferentiated and differentiated cells. Most of analysis has been done under a specific differentiation condition that may present significantly different molecular changes over others. Therefore,it is currently unclear if there are true consensus markers defining undifferentiated hESCs. To identify a set of key genes consistently altered during differentiation of hESCs regardless of differentiation conditions we have performed microarray analysis on undifferentiated hESCs (H1 and H9) and differentiated EB's and validated our results using publicly available expression array data sets. We constructed consensus modules by Weighted Gene Correlation Analysis (WGCNA) and discovered novel markers that are consistently present in undifferentiated hESCs under various differentiation conditions. We have validated top markers (downregulated: LCK,KLKB1 and SLC7A3; upregulated: RhoJ,Zeb2 and Adam12) upon differentiation. Functional validation analysis of LCK in self-renewal of hESCs by using LCK inhibitor or gene silencing with siLCK resulted in a loss of undifferentiation characteristics- morphological change,reduced alkaline phosphatase activity and pluripotency gene expression,demonstrating a potential functional role of LCK in self-renewal of hESCs. We have designated hESC markers to interactive networks in the genome,identifying possible interacting partners and showing how new markers relate to each other. Furthermore,comparison of these data sets with available datasets from iPSCs revealed that the level of these newly identified markers were correlated to the establishment of iPSCs,which may imply a potential role of these markers in gaining of cellular potency. Stem Cells 2014.
View Publication
文献
Tateno H et al. (FEB 2014)
Scientific reports 4 4069
A medium hyperglycosylated podocalyxin enables noninvasive and quantitative detection of tumorigenic human pluripotent stem cells.
While human pluripotent stem cells are attractive sources for cell-replacement therapies,a major concern remains regarding their tumorigenic potential. Thus,safety assessment of human pluripotent stem cell-based products in terms of tumorigenicity is critical. Previously we have identified a pluripotent stem cell-specific lectin probe rBC2LCN recognizing hyperglycosylated podocalyxin as a cell surface ligand. Here we demonstrate that hyperglycosylated podocalyxin is secreted from human pluripotent stem cells into cell culture supernatants. We establish a sandwich assay system,named the GlycoStem test,targeting the soluble hyperglycosylated podocalyxin using rBC2LCN. The GlycoStem test is sufficiently sensitive and quantitative to detect residual human pluripotent stem cells. This work provides a proof of concept for the noninvasive and quantitative detection of tumorigenic human pluripotent stem cells using cell culture supernatants. The developed method should increase the safety of human pluripotent stem cell-based cell therapies.
View Publication
文献
Behar RZ et al. (MAR 2014)
Toxicology in Vitro 28 2 198--208
Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids
In a prior study on electronic cigarette (EC) refill fluids,Cinnamon Ceylon was the most cytotoxic of 36 products tested. The purpose of the current study was to determine if high cytotoxicity is a general feature of cinnamon-flavored EC refill fluids and to identify the toxicant(s) in Cinnamon Ceylon. Eight cinnamon-flavored refill fluids,which were screened using the MTT assay,varied in their cytotoxicity with most being cytotoxic. Human embryonic stem cells were generally more sensitive than human adult pulmonary fibroblasts. Most products were highly volatile and produced vapors that impaired survival of cells in adjacent wells. Cinnamaldehyde (CAD),2-methoxycinnamaldehyde (2MOCA),dipropylene glycol,and vanillin were identified in the cinnamon-flavored refill fluids using gas chromatography-mass spectrometry and high-pressure liquid chromatography (HPLC). When authentic standards of each chemical were tested using the MTT assay,only CAD and 2MOCA were highly cytotoxic. The amount of each chemical in the refill fluids was quantified using HPLC,and cytotoxicity correlated with the amount of CAD/product. Duplicate bottles of the same product were similar,but varied in their concentrations of 2MOCA. These data show that the cinnamon flavorings in refill fluids are linked to cytotoxicity,which could adversely affect EC users. ?? 2013 Elsevier Ltd.
View Publication
文献
Ikebe C and Suzuki K ( 2014)
BioMed research international 2014 951512
Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols.
Administration of bone marrow-derived mesenchymal stem cells (MSCs) is an innovative approach for the treatment of a range of diseases that are not curable by current therapies including heart failure. A number of clinical trials have been completed and many others are ongoing; more than 2,000 patients worldwide have been administered with culture-expanded allogeneic or autologous MSCs for the treatment of various diseases,showing feasibility and safety (and some efficacy) of this approach. However,protocols for isolation and expansion of donor MSCs vary widely between these trials,which could affect the efficacy of the therapy. It is therefore important to develop international standards of MSC production,which should be evidence-based,regulatory authority-compliant,of good medical practice grade,cost-effective,and clinically practical,so that this innovative approach becomes an established widely adopted treatment. This review article summarizes protocols to isolate and expand bone marrow-derived MSCs in 47 recent clinical trials of MSC-based therapy,which were published after 2007 onwards and provided sufficient methodological information. Identified issues and possible solutions associated with the MSC production methods,including materials and protocols for isolation and expansion,are discussed with reference to relevant experimental evidence with aim of future clinical success of MSC-based therapy.
View Publication
文献
Mallanna SK and Duncan SA ( 2013)
26 SUPPL.26 Unit 1G.4.
Differentiation of hepatocytes from pluripotent stem cells.
Differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells into hepatocyte-like cells provides a platform to study the molecular basis of human hepatocyte differentiation,to develop cell culture models of liver disease,and to potentially provide hepatocytes for treatment of end-stage liver disease. Additionally,hepatocyte-like cells generated from human pluripotent stem cells could serve as platforms for drug discovery,determination of pharmaceutical-induced hepatotoxicity,and evaluation of idiosyncratic drug-drug interactions. Here,we describe a step-wise protocol previously developed in our laboratory that facilitates the highly efficient and reproducible differentiation of human pluripotent stem cells into hepatocyte-like cells. Our protocol uses defined culture conditions and closely recapitulates key developmental events that are found to occur during hepatogenesis.
View Publication
文献
Jung L et al. (JUN 2014)
Molecular Human Reproduction 20 6 538--549
ONSL and OSKM cocktails act synergistically in reprogramming human somatic cells into induced pluripotent stem cells
The advent of human induced pluripotent stem cells (hiPSC) is revolutionizing many research fields including cell-replacement therapy,drug screening,physiopathology of specific diseases and more basic research such as embryonic development or diseases modeling. Despite the large number of reports on reprogramming methods,techniques in use remain globally inefficient. We present here a new optimized approach to improve this efficiency. After having tested different monocistronic vectors with poor results,we adopted a polycistronic cassette encoding Thomson's cocktail OCT4,NANOG,SOX2 and LIN28 (ONSL) separated by 2A peptides. This cassette was tested in various vector backbones,based on lentivirus or retrovirus under a LTR or EF1 alpha promoter. This allowed us to show that ONSL-carrier retrovectors reprogrammed adult fibroblast cells with a much higher efficiency (up to 0.6%) than any other tested. We then compared the reprogramming efficiencies of two different polycistronic genes,ONSL and OCT4,SOX2,KLF4 and cMYC (OSKM) placed in the same retrovector backbone. Interestingly,in this context ONSL gene reprograms more efficiently than OSKM but OSKM reprograms faster suggesting that the two cocktails may reprogram through distinct pathways. By equally mixing RV-LTR-ONSL and RV-LTR-OSKM,we indeed observed a remarkable synergy,yielding a reprogramming efficiency of textgreater2%. We present here a drastic improvement of the reprogramming efficiency,which opens doors to the development of automated and high throughput strategies of hiPSC production. Furthermore,non-integrative reprogramming protocols (i.e. mRNA) may take advantage of this synergy to boost their efficiency.
View Publication
文献
Nie Y et al. (JAN 2014)
PLoS ONE 9 1 e88012
Scalable passaging of adherent human pluripotent stem cells
Current laboratory methods used to passage adherent human pluripotent stem cells (hPSCs) are labor intensive,result in reduced cell viability and are incompatible with larger scale production necessary for many clinical applications. To meet the current demand for hPSCs,we have developed a new non-enzymatic passaging method using sodium citrate. Sodium citrate,formulated as a hypertonic solution,gently and efficiently detaches adherent cultures of hPSCs as small multicellular aggregates with minimal manual intervention. These multicellular aggregates are easily and reproducibly recovered in calcium-containing medium,retain a high post-detachment cell viability of 97%±1% and readily attach to fresh substrates. Together,this significantly reduces the time required to expand hPSCs as high quality adherent cultures. Cells subcultured for 25 passages using this novel sodium citrate passaging solution exhibit characteristic hPSC morphology,high levels (textgreater80%) of pluripotency markers OCT4,SSEA-4,TRA-1-60 andTRA-1-81,a normal G-banded karyotype and the ability to differentiate into cells representing all three germ layers,both in vivo and in vitro.
View Publication