Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures.
Chondrogenesis of mesenchymal stem cells (MSCs) is typically induced when they are condensed into a single aggregate and exposed to transforming growth factor-beta (TGF-beta). Hypoxia,like aggregation and TGF-beta delivery,may be crucial for complete chondrogenesis. However,the pellet dimensions and associated self-induced oxygen gradients of current chondrogenic methods may limit the effectiveness of in vitro differentiation and subsequent therapeutic uses. Here we describe the use of embryoid body-forming technology to produce microscopic aggregates of human bone marrow MSCs (BM-MSCs) for chondrogenesis. The use of micropellets reduces the formation of gradients within the aggregates,resulting in a more homogeneous and controlled microenvironment. These micropellet cultures (approximately 170 cells/micropellet) as well as conventional pellet cultures (approximately 2 x 10(5) cells/pellet) were chondrogenically induced under 20% and 2% oxygen environments for 14 days. Compared to conventional pellets under both environments,micropellets differentiated under 2% O(2) showed significantly increased sulfated glycosaminoglycan (sGAG) production and more homogeneous distribution of proteoglycans and collagen II. Aggrecan and collagen II gene expressions were increased in pellet cultures differentiated under 2% O(2) relative to 20% O(2) pellets but 2% O(2) micropellets showed even greater increases in these genes,as well as increased SOX9. These results suggest a more advanced stage of chondrogenesis in the micropellets accompanied by more homogeneous differentiation. Thus,we present a new method for enhancing MSC chondrogenesis that reveals a unique relationship between oxygen tension and aggregate size. The inherent advantages of chondrogenic micropellets over a single macroscopic aggregate should allow for easy integration with a variety of cartilage engineering strategies.
View Publication
文献
Lausen J et al. (FEB 2010)
The Journal of biological chemistry 285 8 5338--46
Targets of the Tal1 transcription factor in erythrocytes: E2 ubiquitin conjugase regulation by Tal1.
The Tal1 transcription factor is essential for the development of the hematopoietic system and plays a role during definitive erythropoiesis in the adult. Despite the importance of Tal1 in erythropoiesis,only a small number of erythroid differentiation target genes are known. A chromatin precipitation and cloning approach was established to uncover novel Tal1 target genes in erythropoiesis. The BirA tag/BirA ligase biotinylation system in combination with streptavidin chromatin precipitation (Strep-CP) was used to co-precipitate genomic DNA bound to Tal1. Tal1 was found to bind in the vicinity of 31 genes including the E2-ubiquitin conjugase UBE2H gene. Binding of Tal1 to UBE2H was confirmed by chromatin immunoprecipitation. UBE2H expression is increased during erythroid differentiation of hCD34(+) cells. Tal1 expression activated UBE2H expression,whereas Tal1 knock-down reduced UBE2H expression and ubiquitin transfer activity. This study identifies parts of the ubiquitinylation machinery as a cellular target downstream of the transcription factor Tal1 and provides novel insights into Tal1-regulated erythropoiesis.
View Publication
文献
Iversen PO et al. (MAR 2010)
American journal of physiology. Regulatory,integrative and comparative physiology 298 3 R808--14
Separate mechanisms cause anemia in ischemic vs. nonischemic murine heart failure.
In ischemic congestive heart failure (CHF),anemia is associated with poor prognosis. Whether anemia develops in nonischemic CHF is uncertain. The hematopoietic inhibitors TNF-alpha and nitric oxide (NO) are activated in ischemic CHF. We examined whether mice with ischemic or nonischemic CHF develop anemia and whether TNF-alpha and NO are involved. We studied mice (n = 7-9 per group) with CHF either due to myocardial infarction (MI) or to overexpression of the Ca(2+)-binding protein calsequestrin (CSQ) or to induced cardiac disruption of the sarcoplasmic reticulum Ca(2+)-ATPase 2 gene (SERCA2 KO). Hematopoiesis was analyzed by colony formation of CD34(+) bone marrow cells. Hemoglobin concentration was 14.0 +/- 0.4 g/dl (mean +/- SD) in controls,while it was decreased to 10.1 +/- 0.4,9.7 +/- 0.4,and 9.6 +/- 0.3 g/dl in MI,CSQ,and SERCA2 KO,respectively (P textless 0.05). Colony numbers per 100,000 CD34(+) cells in the three CHF groups were reduced to 33 +/- 3 (MI),34 +/- 3 (CSQ),and 39 +/- 3 (SERCA2 KO) compared with 68 +/- 4 in controls (P textless 0.05). Plasma TNF-alpha nearly doubled in MI,and addition of anti-TNF-alpha antibody normalized colony formation. Inhibition of colony formation was completely abolished with blockade of endothelial NO synthase in CSQ and SERCA2 KO,but not in MI. In conclusion,the mechanism of anemia in CHF depends on the etiology of cardiac disease; whereas TNF-alpha impairs hematopoiesis in CHF following MI,NO inhibits blood cell formation in nonischemic murine CHF.
View Publication
文献
Valencic E et al. (APR 2010)
Cytotherapy 12 2 154--60
The immunosuppressive effect of Wharton's jelly stromal cells depends on the timing of their licensing and on lymphocyte activation.
BACKGROUND: Mesenchymal stromal cells (MSC) have been proven to have potent immunosuppressive action and hence have been proposed for the treatment of severe Graft Versus Host Disease. However,in most models,MSC were added at the same time of lymphocyte stimulation,which is quite different from what occurs in vivo. AIMS: To investigate how the timing of lymphocyte activation and the exposure to activation-related cytokines (licensing) can influence the immunosuppressive action of Wharton's jelly stromal cells (WJSC). METHODS: WJSC,licensed or not with activation-related cytokines,were added lymphocytes the same time or 24 hours after their stimulation with phytohaemoagglutinin. Proliferation of lymphocytes and cytokines production was measured after three days co-culture. RESULTS: Lymphocytes stimulated in the presence of WJSC displayed a dramatic decrease in proliferation and production of cytokines,in spite of normal expression of activation markers. The suppression was weakened when targeted lymphocytes were seperated by a membrane and partially rescued by the addition of exogenous l-tryptophan,suggesting a major role for indoleamine 2,3-dioxigenase with a probable paracrine effect. Licensing of WJSC increased the immunosuppressive effect,in both contact and non-contact settings. The timing of WJSC licensing was crucial for the immunosuppressive action. Lymphocytes pre-stimulated alone for 24 h,and added afterwards to non-licensed WJSC,showed normal or even increased proliferation. On the other hand,their proliferation was strongly inhibited by licensed WJSC. CONCLUSIONS: WJSC have a potent immunosuppressive function best realized with direct contact,and increased by licensing signals before and during lymphocyte stimulation. Our results could contribute to the set up of new WJSC-based therapies for severe autoimmuno disorders.
View Publication
文献
Randrianarison-Huetz V et al. (APR 2010)
Blood 115 14 2784--95
Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage.
Growth factor independence-1B (Gfi-1B) is a transcriptional repressor essential for erythropoiesis and megakaryopoiesis. Targeted gene disruption of GFI1B in mice leads to embryonic lethality resulting from failure to produce definitive erythrocytes,hindering the study of Gfi-1B function in adult hematopoiesis. We here show that,in humans,Gfi-1B controls the development of erythrocytes and megakaryocytes by regulating the proliferation and differentiation of bipotent erythro-megakaryocytic progenitors. We further identify in this cell population the type III transforming growth factor-beta receptor gene,TGFBR3,as a direct target of Gfi-1B. Knockdown of Gfi-1B results in altered transforming growth factor-beta (TGF-beta) signaling as shown by the increase in Smad2 phosphorylation and its inability to associate to the transcription intermediary factor 1-gamma (TIF1-gamma). Because the Smad2/TIF1-gamma complex is known to specifically regulate erythroid differentiation,we propose that,by repressing TGF-beta type III receptor (TbetaRIotaII) expression,Gfi-1B favors the Smad2/TIF1-gamma interaction downstream of TGF-beta signaling,allowing immature progenitors to differentiate toward the erythroid lineage.
View Publication
文献
Brugger S et al. (FEB 2010)
Assay and drug development technologies 8 1 19--26
The Seventh Annual Ion Channel Retreat Vancouver, Canada, June 29-July 1, 2009.
Seven years ago,Aurora Biomed Inc. (Vancouver,BC) recognized the need to create a forum for scientific discourse spanning the spectrum of ion channel disciplines. Since then,researchers from both academia and industry have been invited each year to share their knowledge on the advancement of ion channel research and technology,drug discovery,and safety pharmacology. Aurora Biomed's 2009 Retreat continued this tradition by covering a variety of topics including Ion Channels as Disease and Pain Targets,TRP Ion Channels,Ion Channel Screening Technologies,Ion Channels in Safety Pharmacology,Structure & Function of Ion Channels,Ion Channels in Disease Pathology,and New Horizons in Life Sciences.
View Publication
文献
van den Akker E et al. (AUG 2010)
Haematologica 95 8 1278--86
Investigating the key membrane protein changes during in vitro erythropoiesis of protein 4.2 (-) cells (mutations Chartres 1 and 2).
BACKGROUND: Protein 4.2 deficiency caused by mutations in the EPB42 gene results in hereditary spherocytosis with characteristic alterations of CD47,CD44 and RhAG. We decided to investigate at which stage of erythropoiesis these hallmarks of protein 4.2 deficiency arise in a novel protein 4.2 patient and whether they cause disruption to the band 3 macrocomplex. DESIGN AND METHODS: We used immunoprecipitations and detergent extractability to assess the strength of protein associations within the band 3 macrocomplex and with the cytoskeleton in erythrocytes. Patient erythroblasts were cultured from peripheral blood mononuclear cells to study the effects of protein 4.2 deficiency during erythropoiesis. RESULTS: We report a patient with two novel mutations in EPB42 resulting in complete protein 4.2 deficiency. Immunoprecipitations revealed a weakened ankyrin-1-band 3 interaction in erythrocytes resulting in increased band 3 detergent extractability. CD44 abundance and its association with the cytoskeleton were increased. Erythroblast differentiation revealed that protein 4.2 and band 3 appear simultaneously and associate early in differentiation. Protein 4.2 deficiency results in lower CD47,higher CD44 expression and increased RhAG glycosylation starting from the basophilic stage. The normal downregulation of CD44 expression was not seen during protein 4.2(-) erythroblast differentiation. Knockdown of CD47 did not increase CD44 expression,arguing against a direct reciprocal relationship. CONCLUSIONS: We have established that the characteristic changes caused by protein 4.2 deficiency occur early during erythropoiesis. We postulate that weakening of the ankyrin-1-band 3 association during protein 4.2 deficiency is compensated,in part,by increased CD44-cytoskeleton binding.
View Publication
文献
Shao L et al. (JUN 2010)
Blood 115 23 4707--14
Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation.
Bone marrow injury is a major adverse side effect of radiation and chemotherapy. Attempts to limit such damage are warranted,but their success requires a better understanding of how radiation and anticancer drugs harm the bone marrow. Here,we report one pivotal role of the BH3-only protein Puma in the radiosensitivity of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). Puma deficiency in mice confers resistance to high-dose radiation in a hematopoietic cell-autonomous manner. Unexpectedly,loss of one Puma allele is sufficient to confer mice radioresistance. Interestingly,null mutation in Puma protects both primitive and differentiated hematopoietic cells from damage caused by low-dose radiation but selectively protects HSCs and HPCs against high-dose radiation,thereby accelerating hematopoietic regeneration. Consistent with these findings,Puma is required for radiation-induced apoptosis in HSCs and HPCs,and Puma is selectively induced by irradiation in primitive hematopoietic cells,and this induction is impaired in Puma-heterozygous cells. Together,our data indicate that selective targeting of p53 downstream apoptotic targets may represent a novel strategy to protecting HSCs and HPCs in patients undergoing intensive cancer radiotherapy and chemotherapy.
View Publication
文献
Jiang X et al. (SEP 2010)
Blood 116 12 2112--21
Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate.
Imatinib mesylate (IM) induces clinical remissions in chronic-phase chronic myeloid leukemia (CML) patients but IM resistance remains a problem. We recently identified several features of CML CD34(+) stem/progenitor cells expected to confer resistance to BCR-ABL-targeted therapeutics. From a study of 25 initially chronic-phase patients,we now demonstrate that some,but not all,of these parameters correlate with subsequent clinical response to IM therapy. CD34(+) cells from the 14 IM nonresponders demonstrated greater resistance to IM than the 11 IM responders in colony-forming cell assays in vitro (P textless .001) and direct sequencing of cloned transcripts from CD34(+) cells further revealed a higher incidence of BCR-ABL kinase domain mutations in the IM nonresponders (10%-40% vs 0%-20% in IM responders,P textless .003). In contrast,CD34(+) cells from IM nonresponders and IM responders were not distinguished by differences in BCR-ABL or transporter gene expression. Interestingly,one BCR-ABL mutation (V304D),predicted to destabilize the interaction between p210(BCR-ABL) and IM,was detectable in 14 of 20 patients. T315I mutant CD34(+) cells found before IM treatment in 2 of 20 patients examined were preferentially amplified after IM treatment. Thus,2 properties of pretreatment CML stem/progenitor cells correlate with subsequent response to IM therapy. Prospective assessment of these properties may allow improved patient management.
View Publication
文献
Bianchi E et al. (NOV 2010)
Blood 116 22 e99--110
c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression.
The c-myb transcription factor is highly expressed in immature hematopoietic cells and down-regulated during differentiation. To define its role during the hematopoietic lineage commitment,we silenced c-myb in human CD34(+) hematopoietic stem/progenitor cells. Noteworthy,c-myb silencing increased the commitment capacity toward the macrophage and megakaryocyte lineages,whereas erythroid differentiation was impaired,as demonstrated by clonogenic assay,morphologic and immunophenotypic data. Gene expression profiling and computational analysis of promoter regions of genes modulated in c-myb-silenced CD34(+) cells identified the transcription factors Kruppel-Like Factor 1 (KLF1) and LIM Domain Only 2 (LMO2) as putative targets,which can account for c-myb knockdown effects. Indeed,chromatin immunoprecipitation and luciferase reporter assay demonstrated that c-myb binds to KLF1 and LMO2 promoters and transactivates their expression. Consistently,the retroviral vector-mediated overexpression of either KLF1 or LMO2 partially rescued the defect in erythropoiesis caused by c-myb silencing,whereas only KLF1 was also able to repress the megakaryocyte differentiation enhanced in Myb-silenced CD34(+) cells. Our data collectively demonstrate that c-myb plays a pivotal role in human primary hematopoietic stem/progenitor cells lineage commitment,by enhancing erythropoiesis at the expense of megakaryocyte diffentiation. Indeed,we identified KLF1 and LMO2 transactivation as the molecular mechanism underlying Myb-driven erythroid versus megakaryocyte cell fate decision.
View Publication
文献
Mehrara BJ et al. (DEC 2010)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 24 12 4877--88
p21cip/WAF is a key regulator of long-term radiation damage in mesenchyme-derived tissues.
This study aimed to determine the mechanisms responsible for long-term tissue damage following radiation injury. We irradiated p21-knockout (p21(-/-)) and wild-type (WT) mice and determined the long-term deleterious effects of this intervention on mesenchyme-derived tissues. In addition,we explored the mechanisms of radiation-induced mesenchymal stem cell (MSC) dysfunction in isolated bone marrow-derived cells. p21 expression was chronically elevated textgreater200-fold in irradiated tissues. Loss of p21 function resulted in a textgreater4-fold increase in the number of skin MSCs remaining after radiation. p21(-/-) mice had significantly less radiation damage,including 6-fold less scarring,40% increased growth potential,and 4-fold more hypertrophic chondrocytes in the epiphyseal plate (Ptextless0.01). Irradiated p21(-/-) MSCs had 4-fold increased potential for bone or fat differentiation,4-fold greater proliferation rate,and nearly 7-fold lower senescence as compared to WT MSCs (Ptextless0.01). Ectopic expression of p21 in knockout cells decreased proliferation and differentiation potential and recapitulated the WT phenotype. Loss of p21 function markedly decreases the deleterious effects of radiation injury in mesenchyme-derived tissues and preserves tissue-derived MSCs. In addition,p21 is a critical regulator of MSC proliferation,differentiation,and senescence both at baseline and in response to radiation.
View Publication
文献
Aliahmad P et al. (OCT 2010)
Nature immunology 11 10 945--52
Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages.
TOX is a DNA-binding factor required for development of CD4(+) T cells,natural killer T cells and regulatory T cells. Here we document that both natural killer (NK) cell development and lymphoid tissue organogenesis were also inhibited in the absence of TOX. We found that the development of lymphoid tissue-inducer cells,a rare subset of specialized cells that has an integral role in lymphoid tissue organogenesis,required TOX. Tox was upregulated considerably in immature NK cells in the bone marrow,consistent with the loss of mature NK cells in the absence of this nuclear protein. Thus,many cell lineages of the immune system share a TOX-dependent step for development.
View Publication