Deletion of the core region of 5' HS2 of the mouse beta-globin locus control region reveals a distinct effect in comparison with human beta-globin transgenes.
The beta-globin locus control region (LCR) is a large DNA element that is required for high-level expression of beta-like globin genes from the endogenous mouse locus or in transgenic mice carrying the human beta-globin locus. The LCR encompasses 6 DNaseI hypersensitive sites (HSs) that bind transcription factors. These HSs each contain a core of a few hundred base pairs (bp) that has most of the functional activity and exhibits high interspecies sequence homology. Adjoining the cores are 500- to 1000-bp flanks" with weaker functional activity and lower interspecies homology. Studies of human beta-globin transgenes and of the endogenous murine locus show that deletion of an entire HS (core plus flanks) moderately suppresses expression. However�
View Publication
文献
Tang YL et al. (OCT 2005)
Journal of the American College of Cardiology 46 7 1339--50
Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector.
OBJECTIVES: The goal of this study was to modify mesenchymal stem cells (MSCs) cells with a hypoxia-regulated heme oxygenase-1 (HO-1) plasmid to enhance the survival of MSCs in acute myocardial infarction (MI) heart. BACKGROUND: Although stem cells are being tested clinically for cardiac repair,graft cells die in the ischemic heart because of the effects of hypoxia/reoxygenation,inflammatory cytokines,and proapoptotic factors. Heme oxygenase-1 is a key component in inhibiting most of these factors. METHODS: Mesenchymal stem cells from bone marrow were transfected with either HO-1 or LacZ plasmids. Cell apoptosis was assayed in vitro after hypoxia-reoxygen treatment. In vivo,1 x 10(6) of male MSC(HO-1),MSC(LacZ),MSCs,or medium was injected into mouse hearts 1 h after MI (n = 16/group). Cell survival was assessed in a gender-mismatched transplantation model. Apoptosis,left ventricular remodeling,and cardiac function were tested in a gender-matched model. RESULTS: In the ischemic myocardium,the MSC(HO-1) group had greater expression of HO-1 and a 2-fold reduction in the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick end labeling-positive cells compared with the MSC(LacZ) group. At seven days after implantation,the survival MSC(HO-1) was five-fold greater than the MSC(LacZ) group; MSC(HO-1) also attenuated left ventricular remodeling and enhanced the functional recovery of infarcted hearts two weeks after MI. CONCLUSIONS: A hypoxia-regulated HO-1 vector modification of MSCs enhances the tolerance of engrafted MSCs to hypoxia-reoxygen injury in vitro and improves their viability in ischemic hearts. This demonstration is the first showing that a physiologically inducible vector expressing of HO-1 genes improves the survival of stem cells in myocardial ischemia.
View Publication
文献
Zhang H et al. (NOV 2005)
American journal of physiology. Heart and circulatory physiology 289 5 H2089--96
Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy.
We evaluated the impact of donor age on the efficacy of myocardial cellular therapy for ischemic cardiomyopathy. Characteristics of smooth muscle cells (SMC),bone marrow stromal cells (MSCs),and skeletal muscle cells (SKMCs) from young,adult,and old rats were compared in vitro. Three weeks after coronary ligation,3.5 million SMCs (n = 11) or MSCs (n = 9) from old syngenic rats or culture medium (n = 6) were injected into the ischemic region. Five weeks after implantation,cardiac function was assessed by echocardiography and the Langendorff apparatus. In the in vitro study,the numbers and proliferation of MSCs from fresh bone marrow and SKMCs from fresh tissue but not SMCs were markedly diminished in old animals (P textless 0.05 both groups). SKMCs from old animals did not reach confluence. After treatment with 5-azacytidine (azacitidine),the myogenic potential of old MSCs was decreased compared with young MSCs. In the in vivo study,both SMC and MSC transplantation induced significant angiogenesis compared with media injections (P textless 0.05 both groups). Transplantation of SMCs but not MSCs prevented scar thinning (P = 0.03) and improved ejection fraction and fractional shortening (P textless 0.05). Load-independent indices of cardiac function in a Langendorff preparation confirmed improved function in the aged SMC group (P = 0.01) but not in the MSC group compared with the control group. In conclusion,donor age adversely impacts the efficacy of cellular therapy for myocardial regeneration and is cell-type dependent. SMCs from old donors retain their ability to improve cardiac function after implantation into ischemic myocardium.
View Publication
文献
Hoebeke I et al. (APR 2006)
Blood 107 7 2879--81
Overexpression of HES-1 is not sufficient to impose T-cell differentiation on human hematopoietic stem cells.
By retroviral overexpression of the Notch-1 intracellular domain (ICN) in human CD34+ hematopoietic stem cells (HSCs),we have shown previously that Notch-1 signaling promotes the T-cell fate and inhibits the monocyte and B-cell fate in several in vitro and in vivo differentiation assays. Here,we investigated whether the effects of constitutively active Notch-1 can be mimicked by overexpression of its downstream target gene HES1. Upon HES-1 retroviral transduction,human CD34+ stem cells had a different outcome in the differentiation assays as compared to ICN-transduced cells. Although HES-1 induced a partial block in B-cell development,it did not inhibit monocyte development and did not promote T/NK-cell-lineage differentiation. On the contrary,a higher percentage of HES-1-transduced stem cells remained CD34+. These experiments indicate that HES-1 alone is not able to substitute for Notch-1 signaling to induce T-cell differentiation of human CD34+ hematopoietic stem cells.
View Publication
文献
Menon MP et al. (MAR 2006)
The Journal of clinical investigation 116 3 683--94
Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-Stat5 axis.
Anemia due to chronic disease or chemotherapy often is ameliorated by erythropoietin (Epo). Present studies reveal that,unlike steady-state erythropoiesis,erythropoiesis during anemia depends sharply on an Epo receptor-phosphotyrosine-343-Stat5 signaling axis. In mice expressing a phosphotyrosine-null (PY-null) Epo receptor allele (EpoR-HM),severe and persistent anemia was induced by hemolysis or 5-fluorouracil. In short-term transplantation experiments,donor EpoR-HM bone marrow cells also failed to efficiently repopulate the erythroid compartment. In each context,stress erythropoiesis was rescued to WT levels upon the selective restoration of an EpoR PY343 Stat5-binding site (EpoR-H allele). As studied using a unique primary culture system,EpoR-HM erythroblasts exhibited marked stage-specific losses in Epo-dependent growth and survival. EpoR-H PY343 signals restored efficient erythroblast expansion,and the selective Epo induction of the Stat5 target genes proviral integration site-1 (Pim-1) and oncostatin-M. Bcl2-like 1 (Bcl-x),in contrast,was not significantly induced via WT-EpoR,EpoR-HM,or EpoR-H alleles. In Kit+ CD71+ erythroblasts,EpoR-PY343 signals furthermore enhanced SCF growth effects,and SCF modulation of Pim-1 kinase and oncostatin-M expression. In maturing Kit- CD71+ erythroblasts,oncostatin-M exerted antiapoptotic effects that likewise depended on EpoR PY343-mediated events. Stress erythropoiesis,therefore,requires stage-specific EpoR-PY343-Stat5 signals,some of which selectively bolster SCF and oncostatin-M action.
View Publication
文献
Shead EF et al. (AUG 2006)
American journal of respiratory and critical care medicine 174 3 306--11
Osteoclastogenesis during infective exacerbations in patients with cystic fibrosis.
RATIONALE: Adults with cystic fibrosis (CF) are at increased risk of developing osteoporosis. During infective exacerbations,increased production of proinflammatory cytokines and markers of bone resorption have been reported. OBJECTIVE: The aim of this study is to investigate the growth and proliferation of potential osteoclast precursor cells before,during,and after intravenous antibiotic treatment of infective exacerbations in patients with CF. METHODS: Hematopoietic precursor cell growth was examined using colony formation assays using Methocult culture medium. Circulating potential osteoclast precursors were identified using four-color flow cytometry by CD14,CD33,CD34,and CD45 expression. RESULTS: At the start of an infective exacerbation increases in hematopoietic precursor colony formation (15.42 colonies/10(5) cells plated,p = 0.025),proliferation (28.5%,p textless 0.001),and the numbers of circulating potential osteoclast precursors (6.5%,p textless 0.001) were seen in comparison with baseline levels. These increases declined after treatment with intravenous antibiotics to a level close to baseline. CONCLUSIONS: The results demonstrate an increase in the production of potential osteoclast precursors in the peripheral blood during CF infective exacerbations. This may result in increased bone resorption and contribute to bone loss in patients with CF.
View Publication
文献
Liu H et al. (DEC 2006)
Biomaterials 27 36 5978--89
Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells.
We have previously demonstrated that mouse embryonic stem (ES) cells differentiated on three-dimensional (3D),highly porous,tantalum-based scaffolds (Cytomatrixtrade mark) have significantly higher hematopoietic differentiation efficiency than those cultured under conventional two-dimensional (2D) tissue culture conditions. In addition,ES cell-seeded scaffolds cultured inside spinner bioreactors showed further enhancement in hematopoiesis compared to static conditions. In the present study,we evaluated how these various biomaterial-based culture conditions,e.g. 2D vs. 3D scaffolds and static vs. dynamic,influence the global gene expression profile of differentiated ES cells. We report that compared to 2D tissue culture plates,cells differentiated on porous,Cytomatrixtrade mark scaffolds possess significantly higher expression levels of extracellular matrix (ECM)-related genes,as well as genes that regulate cell growth,proliferation and differentiation. In addition,these differences in gene expression were more pronounced in 3D dynamic culture compared to 3D static culture. We report specific genes that are either uniquely expressed under each condition or are quantitatively regulated,i.e. over expressed or inhibited by a specific culture environment. We conclude that that biomaterial-based 3D cultures,especially under dynamic conditions,might favor efficient hematopoietic differentiation of ES cells by stimulating increased expression of specific ECM proteins,growth factors and cell adhesion related genes while significantly down-regulating genes that act to inhibit expression of these molecules.
View Publication
文献
Liu H et al. (DEC 2006)
Biomaterials 27 36 6004--14
Three-dimensional culture for expansion and differentiation of mouse embryonic stem cells.
Differentiation of embryonic stem (ES) cells typically requires cell-cell aggregation in the form of embryoid bodies (EBs). This process is not very well controlled and final cell numbers can be limited by EB agglomeration and the inability to drive differentiation towards a desired cell type. This study compares three-dimensional (3D) fibrin culture to conventional two-dimensional (2D) suspension culture and to culture in a semisolid methylcellulose medium solution. Two types of fibrin culture were evaluated,including a PEGylated fibrin gel. PEGylation with a difunctional PEG derivative retarded fibrinogen migration during through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as a result of crosslinking,similarly,degradation was slowed in the PEGylated gel. ES cell proliferation was higher in both the fibrin and PEGylated fibrin gels versus 2D and methylcellulose controls. FACS analysis and real-time-PCR revealed differences in patterns of differentiation for the various culture systems. Culture in PEGylated fibrin or methylcellulose culture demonstrated features characteristic of less extensive differentiation relative to fibrin and 2D culture as evidenced by the transcription factor Oct-4. Fibrin gels showed gene and protein expression similar to that in 2D culture. Both fibrin and 2D cultures demonstrated statistically greater cell numbers positive for the vascular mesoderm marker,VE-cadherin.
View Publication
文献
Yalcintepe L et al. (NOV 2006)
Blood 108 10 3530--7
Expression of interleukin-3 receptor subunits on defined subpopulations of acute myeloid leukemia blasts predicts the cytotoxicity of diphtheria toxin interleukin-3 fusion protein against malignant progenitors that engraft in immunodeficient mice.
The interleukin-3 receptor (IL-3R) subunits are overexpressed on acute myeloid leukemia (AML) blasts compared with normal hematopoietic cells and are thus potential targets for novel therapeutic agents. Both fluorescence-activated cell sorter (FACS) analysis and quantitative real-time reverse transcription-polymerase chain reaction (QRT-PCR) were used to quantify expression of the IL-3Ralpha and beta(c) subunits on AML cells. QRT-PCR for both subunits was most predictive of killing of AML colony-forming cells (AML-CFCs) by diphtheria toxin-IL-3 fusion protein (DT(388)IL3). Among 19 patient samples,the relative level of the IL-3Ralpha was higher than the IL-3Rbeta(c) and highest in CD34(+)CD38(-)CD71(-) cells,enriched for candidate leukemia stem cells,compared with cell fractions depleted of such progenitors. Overall,the amount of IL-3Rbeta(c) subunit did not vary among sorted subpopulations. However,expression of both subunits varied by more than 10-fold among different AML samples for all subpopulations studied. The level of IL-3Rbeta(c) expression versus glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (set at 1000) ranged from 0.14 to 13.56 in CD34(+)CD38(-)CD71(-) cells from different samples; this value was correlated (r = .76,P = .05) with the ability of DT(388)IL3 to kill AML progenitors that engraft in beta(2)-microglobin-deficient nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice (n = 7). Thus,quantification of IL-3R subunit expression on AML blasts predicts the effectiveness IL-3R-targeted therapy in killing primitive leukemic progenitors.
View Publication
文献
Pevsner-Fischer M et al. (FEB 2007)
Blood 109 4 1422--32
Toll-like receptors and their ligands control mesenchymal stem cell functions.
Mesenchymal stem cells (MSCs) are widespread in adult organisms and may be involved in tissue maintenance and repair as well as in the regulation of hematopoiesis and immunologic responses. Thus,it is important to discover the factors controlling MSC renewal and differentiation. Here we report that adult MSCs express functional Toll-like receptors (TLRs),confirmed by the responses of MSCs to TLR ligands. Pam3Cys,a prototypic TLR-2 ligand,augmented interleukin-6 secretion by MSC,induced nuclear factor kappa B (NF-kappaB) translocation,reduced MSC basal motility,and increased MSC proliferation. The hallmark of MSC function is the capacity to differentiate into several mesodermal lineages. We show herein that Pam3Cys inhibited MSC differentiation into osteogenic,adipogenic,and chondrogenic cells while sparing their immunosuppressive effect. Our study therefore shows that a TLR ligand can antagonize MSC differentiation triggered by exogenous mediators and consequently maintains the cells in an undifferentiated and proliferating state in vitro. Moreover,MSCs derived from myeloid factor 88 (MyD88)-deficient mice lacked the capacity to differentiate effectively into osteogenic and chondrogenic cells. It appears that TLRs and their ligands can serve as regulators of MSC proliferation and differentiation and might affect the maintenance of MSC multipotency.
View Publication
文献
Boomsma RA et al. (OCT 2007)
International journal of cardiology 122 1 17--28
Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size.
BACKGROUND: The purpose of this study was to determine whether murine mesenchymal stem cells (MSC) are able to home to the viable myocardium when injected intravenously and attenuate cardiac dysfunction and ventricular remodeling associated with myocardial infarction. METHODS AND RESULTS: Murine bone marrow cells were negatively selected for lineage markers and adherent MSC differentiated into adipocytes and osteocytes following treatment in culture. Two weeks after coronary occlusion that resulted in a permanent transmural infarct we observed a significant drop in LV systolic pressure,dP/dt(max),dP/dt(min),ESPVR and E(max) and a significant increase in end-diastolic volume in vivo. Femoral vein injection of MSC 1 h after occlusion attenuated the cardiac dysfunction without altering infarct size,or end-diastolic volume. Injected MSC pre-labeled with fluorescent paramagnetic microspheres were observed scattered in noninfarcted regions of the myocardium. Flow cytometry of whole heart digests after intravenous injection of MSC labeled with either fluorescent microspheres or fluorescent PKH26 dye demonstrated that infarcted hearts from mice that received MSC injections contained significantly more cells that integrated into the heart (20x) than those from uninfarcted controls. CONCLUSION: We conclude that intravenously injected MSC were able to home to viable myocardium and preserve systolic function by 2 weeks following ligation. The preserved contractility is likely an MSC-mediated paracrine response since infarct morphology was unchanged and labeled cells observed at two weeks exhibited the same characteristics as the injected MSC. These data underscore the importance of using MSC as a potential therapeutic intervention in preserving cardiac function following infarction.
View Publication
Scoring CFU-GM colonies in vitro by data fusion: a first account.
OBJECTIVE: In vitro models of hematopoiesis used in investigative hematopathology and in safety studies on candidate drugs,involve clonogenic assays on colony-forming unit granulocyte macrophage (CFU-GM). These assays require live and unstained colonies to be counted. Most laboratories still rely on visual scoring,which is time-consuming and error-prone. As a consequence,automated scoring is highly desired. An algorithm that recognizes and scores CFU-GM colonies by data fusion has been developed. Some preliminary results are presented in this article. METHODS: CFU-GM assays were carried out on hematopoietic progenitors (human umbilical cord blood cells) grown in methylcellulose. Colony images were acquired by a digital camera and stored. RESULTS: The classifier was designed to process images of layers sampled from a three-dimensional (3D) domain and forming a stack. Structure and texture information was extracted from each image. Classifier training was based on a 3D colony model applied to the image stack. The number of scored colonies (assigned class) was required to match the count supplied by the human expert (class of belonging). The trained classifier was validated on one more stack and then applied to a stack with overlapping colonies. Scoring in distortion- and caustic-affected border areas was also successfully demonstrated. Because of hardware limitations,compact colonies in some cases were missed. CONCLUSIONS: The industry's scoring methods all rely on structure alone and process 2D data. Instead,the classifier here fuses data from a whole stack and is capable,in principle,of high-throughput screening.
View Publication