Valamehr B et al. (SEP 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 38 14459--64
Hydrophobic surfaces for enhanced differentiation of embryonic stem cell-derived embryoid bodies.
With their unique ability to differentiate into all cell types,embryonic stem (ES) cells hold great therapeutic promise. To improve the efficiency of embryoid body (EB)-mediated ES cell differentiation,we studied murine EBs on the basis of their size and found that EBs with an intermediate size (diameter 100-300 microm) are the most proliferative,hold the greatest differentiation potential,and have the lowest rate of cell death. In an attempt to promote the formation of this subpopulation,we surveyed several biocompatible substrates with different surface chemical parameters and identified a strong correlation between hydrophobicity and EB development. Using self-assembled monolayers of various lengths of alkanethiolates on gold substrates,we directly tested this correlation and found that surfaces that exhibit increasing hydrophobicity enrich for the intermediate-size EBs. When this approach was applied to the human ES cell system,similar phenomena were observed. Our data demonstrate that hydrophobic surfaces serve as a platform to deliver uniform EB populations and may significantly improve the efficiency of ES cell differentiation.
View Publication
文献
Madonna R and De Caterina R (NOV 2008)
American journal of physiology. Cell physiology 295 5 C1271--80
In vitro neovasculogenic potential of resident adipose tissue precursors.
Adipose tissue development is associated with neovascularization,which might be exploited therapeutically. We investigated the neovasculogenesis antigenic profile and kinetics in adipose tissue-derived stromal cells (ADSCs) to understand the potential of ADSCs to generate new vessels. Murine and human visceral adipose tissues were processed with collagenase to obtain ADSCs from the stromal vascular fraction. Freshly isolated murine and human ADSCs featured the expression of early markers of endothelial differentiation [uptake of DiI-labeled acetylated LDL,CD133,CD34,kinase insert domain receptor (KDR)],but not markers for more mature endothelial cells (CD31 and von Willebrand factor). In methylcellulose medium,multilocular cells positive for Oil Red O staining appeared after 6 days. After 10 days,clusters of ADSCs spontaneously formed branched tubelike structures,which were strongly positive for CD34 and CD31,while losing their ability to undergo adipocyte differentiation. In Matrigel,in the presence of endothelial growth factors ADSCs formed branched tubelike structures. By clonal assays in methylcellulose we also determined the frequency of granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) colony-forming units from ADSCs,compared with bone marrow-derived stromal cells (BMSCs) used as a positive control. After 4-14 days,BMSCs formed 8 +/- 3 BFU-E and 40 +/- 10 CFU-GM,while ADSCs never produced colonies of myeloid progenitors. The developing adipose tissue has neovasculogenic potential,based on the recruitment of local rather than circulating progenitors. Adipose tissue might therefore be a viable autonomous source of cells for postnatal neovascularization.
View Publication
文献
Ludwig T et al. (SEP 2007)
Current protocols in stem cell biology Chapter 1 September Unit 1C.2
Defined, Feeder-Independent Medium for Human Embryonic Stem Cell Culture
The developmental potential of human ES cells makes them an important tool in developmental,pharmacological,and clinical research. For human ES cell technology to be fully exploited,however,culture efficiency must be improved,large-scale culture enabled,and safety ensured. Traditional human ES cell culture systems have relied on serum products and mouse feeder layers,which limit the scale,present biological variability,and expose the cells to potential contaminants. Defined,feeder-independent culture systems improve the safety and efficiency of ES cell technology,enabling translational research. The protocols herein are designed with the standard research laboratory in mind. They contain recipes for the formulation of mTeSR (a defined medium for human ES cell culture) and detailed protocols for the culture,transfer,and passage of cells grown in these feeder-independent conditions. They provide a basis for routine feeder-independent culture,and a starting point for additional optimization of culture conditions.
View Publication
文献
Stern P et al. (SEP 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 37 13895--900
A system for Cre-regulated RNA interference in vivo.
We report a system for Cre-regulated expression of RNA interference in vivo. Expression cassettes comprise selectable and FACS-sortable markers in tandem with additional marker genes and shRNAs in the antisense orientation. The cassettes are flanked by tandem LoxP sites arranged so that Cre expression inverts the marker-shRNA construct,allowing its regulated expression (and,at the same time,deletes the original selection/marker genes). The cassettes can be incorporated into retroviral or lentiviral vectors and delivered to cells in culture or used to generate transgenic mice. We describe cassettes incorporating various combinations of reporter genes,miRNA-based RNAi (including two shRNA constructs at once),and oncogenes and demonstrate the delivery of effective RNA interference in cells in culture,efficient transduction into hematopoietic stem cells with cell-type-specific knockdown in their progeny,and rapid generation of regulated shRNA knockdown in transgenic mice. These vector systems allow regulated combinatorial manipulation (both overexpression and loss of function) of gene expression in multiple systems in vitro and in vivo.
View Publication
文献
Corti S et al. (OCT 2008)
The Journal of clinical investigation 118 10 3316--30
Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy.
Spinal muscular atrophy (SMA),a motor neuron disease (MND) and one of the most common genetic causes of infant mortality,currently has no cure. Patients with SMA exhibit muscle weakness and hypotonia. Stem cell transplantation is a potential therapeutic strategy for SMA and other MNDs. In this study,we isolated spinal cord neural stem cells (NSCs) from mice expressing green fluorescent protein only in motor neurons and assessed their therapeutic effects on the phenotype of SMA mice. Intrathecally grafted NSCs migrated into the parenchyma and generated a small proportion of motor neurons. Treated SMA mice exhibited improved neuromuscular function,increased life span,and improved motor unit pathology. Global gene expression analysis of laser-capture-microdissected motor neurons from treated mice showed that the major effect of NSC transplantation was modification of the SMA phenotype toward the wild-type pattern,including changes in RNA metabolism proteins,cell cycle proteins,and actin-binding proteins. NSC transplantation positively affected the SMA disease phenotype,indicating that transplantation of NSCs may be a possible treatment for SMA.
View Publication
文献
Valenti MT et al. (DEC 2008)
Bone 43 6 1084--92
Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells.
MSCs are known to have an extensive proliferative potential and ability to differentiate in various cell types. Osteoblastic differentiation from mesenchymal progenitor cells is an important step of bone formation,though the pattern of gene expression during differentiation is not yet well understood. Here,to investigate the possibility to obtain a model for in vitro bone differentiation using mesenchymal stem cells (hMSCs) from human subjects non-invasively,we developed a method to obtain hMSCs-like cells from peripheral blood by a two step method that included an enrichment of mononuclear cells followed by depletion of unwanted cells. Using these cells,we analyzed the expression of transcription factor genes (runt-related transcription factor 2 (RUNX2) and osterix (SP7)) and bone related genes (osteopontin (SPP1),osteonectin (SPARC) and collagen,type I,alpha 1 (COLIA1)) during osteoblastic differentiation. Our results demonstrated that hMSCs can be obtained from peripheral blood and that they are able to generate CFU-F and to differentiate in osteoblast and adipocyte; in this study,we also identified a possible gene expression timing during osteoblastic differentiation that provided a powerful tool to study bone physiology.
View Publication
文献
Chin JY et al. (SEP 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 36 13514--9
Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids.
Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin,causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian cells via site-specific binding and creation of altered helical structures that provoke DNA repair. We have designed a series of triplex-forming PNAs that can specifically bind to sequences in the human beta-globin gene. We demonstrate here that these PNAs,when cotransfected with recombinatory donor DNA fragments,can promote single base-pair modification at the start of the second intron of the beta-globin gene,the site of a common thalassemia-associated mutation. This single base pair change was detected by the restoration of proper splicing of transcripts produced from a green fluorescent protein-beta-globin fusion gene. The ability of these PNAs to induce recombination was dependent on dose,sequence,cell-cycle stage,and the presence of a homologous donor DNA molecule. Enhanced recombination,with frequencies up to 0.4%,was observed with use of the lysomotropic agent chloroquine. Finally,we demonstrate that these PNAs were effective in stimulating the modification of the endogenous beta-globin locus in human cells,including primary hematopoietic progenitor cells. This work suggests that PNAs can be effective tools to induce heritable,site-specific modification of disease-related genes in human cells.
View Publication
文献
O'Brien JJ et al. (NOV 2008)
Blood 112 10 4051--60
15-deoxy-delta12,14-PGJ2 enhances platelet production from megakaryocytes.
Thrombocytopenia is a critical problem that occurs in many hematologic diseases,as well as after cancer therapy and radiation exposure. Platelet transfusion is the most commonly used therapy but has limitations of alloimmunization,availability,and expense. Thus,the development of safe,small,molecules to enhance platelet production would be advantageous for the treatment of thrombocytopenia. Herein,we report that an important lipid mediator and a peroxisome proliferator-activated receptor gamma (PPARgamma) ligand called 15-deoxy-Delta(12,14) prostaglandin J(2) (15d-PGJ(2)),increases Meg-01 maturation and platelet production. 15d-PGJ(2) also promotes platelet formation from culture-derived mouse and human megakaryocytes and accelerates platelet recovery after in vivo radiation-induced bone marrow injury. Interestingly,the platelet-enhancing effects of 15d-PGJ(2) in Meg-01 cells are independent of PPARgamma,but dependent on reactive oxygen species (ROS) accumulation; treatment with antioxidants such as glutathione ethyl ester (GSH-EE); or N-acetylcysteine (NAC) attenuate 15d-PGJ(2)-induced platelet production. Collectively,these data support the concept that megakaryocyte redox status plays an important role in platelet generation and that small electrophilic molecules may have clinical efficacy for improving platelet numbers in thrombocytopenic patients.
View Publication
文献
Lu S-J et al. (SEP 2008)
Regenerative medicine 3 5 693--704
Robust generation of hemangioblastic progenitors from human embryonic stem cells.
BACKGROUND: Human embryonic stem cells (hESCs) are a potentially inexhaustible source of cells for replacement therapy. However,successful preclinical and clinical progress requires efficient and controlled differentiation towards the specific differentiated cell fate. METHODS: We previously developed a strategy to generate blast cells (BCs) from hESCs that were capable of differentiating into vascular structures as well as into all hematopoietic cell lineages. Although the BCs were shown to repair damaged vasculature in multiple animal models,the large-scale generation of cells under these conditions was challenging. Here we report a simpler and more efficient method for robust generation of hemangioblastic progenitors. RESULTS: In addition to eliminating several expensive factors that are unnecessary,we demonstrate that bone morphogenetic protein (BMP)-4 and VEGF are necessary and sufficient to induce hemangioblastic commitment and development from hESCs during early stages of differentiation. BMP-4 and VEGF significantly upregulate T-brachyury,KDR,CD31 and Lmo2 gene expression,while dramatically downregulating Oct-4 expression. The addition of basic FGF during growth and expansion was found to further enhance BC development,consistently generating approximately 1 x 10(8) BCs from one six well plate of hESCs. CONCLUSION: This new method represents a significantly improved system for generating hemangioblasts from hESCs,and although simplified,results in an eightfold increase in cell yield.
View Publication
文献
Swijnenburg R-JJ et al. (SEP 2008)
Proc Natl Acad Sci U S A 105 35 12991--6
Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts
Given their self-renewing and pluripotent capabilities,human embryonic stem cells (hESCs) are well poised as a cellular source for tissue regeneration therapy. However,the host immune response against transplanted hESCs is not well characterized. In fact,controversy remains as to whether hESCs have immune-privileged properties. To address this issue,we used in vivo bioluminescent imaging to track the fate of transplanted hESCs stably transduced with a double-fusion reporter gene consisting of firefly luciferase and enhanced GFP. We show that survival after transplant is significantly limited in immunocompetent as opposed to immunodeficient mice. Repeated transplantation of hESCs into immunocompetent hosts results in accelerated hESC death,suggesting an adaptive donor-specific immune response. Our data demonstrate that transplanted hESCs trigger robust cellular and humoral immune responses,resulting in intragraft infiltration of inflammatory cells and subsequent hESC rejection. Moreover,we have found CD4(+) T cells to be an important modulator of hESC immune-mediated rejection. Finally,we show that immunosuppressive drug regimens can mitigate the anti-hESC immune response and that a regimen of combined tacrolimus and sirolimus therapies significantly prolongs survival of hESCs for up to 28 days. Taken together,these data suggest that hESCs are immunogenic,trigger both cellular and humoral-mediated pathways,and,as a result,are rapidly rejected in xenogeneic hosts. This process can be mitigated by a combined immunosuppressive regimen as assessed by molecular imaging approaches.
View Publication
文献
Harb N et al. (JAN 2008)
PLoS ONE 3 8 e3001
The Rho-Rock-Myosin signaling axis determines cell-cell integrity of self-renewing pluripotent stem cells.
BACKGROUND: Embryonic stem (ES) cells self-renew as coherent colonies in which cells maintain tight cell-cell contact. Although intercellular communications are essential to establish the basis of cell-specific identity,molecular mechanisms underlying intrinsic cell-cell interactions in ES cells at the signaling level remain underexplored.backslashnbackslashnMETHODOLOGY/PRINCIPAL FINDINGS: Here we show that endogenous Rho signaling is required for the maintenance of cell-cell contacts in ES cells. siRNA-mediated loss of function experiments demonstrated that Rock,a major effector kinase downstream of Rho,played a key role in the formation of cell-cell junctional assemblies through regulation of myosin II by controlling a myosin light chain phosphatase. Chemical engineering of this signaling axis by a Rock-specific inhibitor revealed that cell-cell adhesion was reversibly controllable and dispensable for self-renewal of mouse ES cells as confirmed by chimera assay. Furthermore,a novel culture system combining a single synthetic matrix,defined medium,and the Rock inhibitor fully warranted human ES cell self-renewal independent of animal-derived matrices,tight cell contacts,or fibroblastic niche-forming cells as determined by teratoma formation assay.backslashnbackslashnCONCLUSIONS/SIGNIFICANCE: These findings demonstrate an essential role of the Rho-Rock-Myosin signaling axis for the regulation of basic cell-cell communications in both mouse and human ES cells,and would contribute to advance in medically compatible xeno-free environments for human pluripotent stem cells.
View Publication
文献
Kharas MG et al. (SEP 2008)
The Journal of clinical investigation 118 9 3038--50
Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells.
Some cases of pre-B cell acute lymphoblastic leukemia (pre-B-ALL) are caused by the Philadelphia (Ph) chromosome-encoded BCR-ABL oncogene,and these tend to have a poor prognosis. Inhibitors of the PI3K/AKT pathway reduce BCR-ABL-mediated transformation in vitro; however,the specific PI3K isoforms involved are poorly defined. Using a murine model of Ph+ pre-B-ALL,we found that deletion of both Pik3r1 and Pik3r2,genes encoding class IA PI3K regulatory isoforms,severely impaired transformation. BCR-ABL-dependent pre/pro-B cell lines could be established at low frequency from progenitors that lacked these genes,but the cells were smaller,proliferated more slowly,and failed to cause leukemia in vivo. These cell lines displayed nearly undetectable PI3K signaling function and were resistant to the PI3K inhibitor wortmannin. However,they maintained activation of mammalian target of rapamycin (mTOR) and were more sensitive to rapamycin. Treatment with rapamycin caused feedback activation of AKT in WT cell lines but not PI3K-deficient lines. A dual inhibitor of PI3K and mTOR,PI-103,was more effective than rapamycin at suppressing proliferation of mouse pre-B-ALL and human CD19+CD34+)Ph+ ALL leukemia cells treated with the ABL kinase inhibitor imatinib. Our findings provide mechanistic insights into PI3K dependency in oncogenic networks and provide a rationale for targeting class IA PI3K,alone or together with mTOR,in the treatment of Ph+ ALL.
View Publication