Jumabay M et al. (NOV 2009)
Journal of molecular and cellular cardiology 47 5 565--75
Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats.
Adipose tissue-derived stem cells have been demonstrated to differentiate into cardiomyocytes and vascular endothelial cells. Here we investigate whether mature adipocyte-derived dedifferentiated fat (DFAT) cells can differentiate to cardiomyocytes in vitro and in vivo by establishing DFAT cell lines via ceiling culture of mature adipocytes. DFAT cells were obtained by dedifferentiation of mature adipocytes from GFP-transgenic rats. We evaluated the differentiating ability of DFAT cells into cardiomyocytes by detection of the cardiac phenotype markers in immunocytochemical and RT-PCR analyses in vitro. We also examined effects of the transplantation of DFAT cells into the infarcted heart of rats on cardiomyocytes regeneration and angiogenesis. DFAT cells expressed cardiac phenotype markers when cocultured with cardiomyocytes and also when grown in MethoCult medium in the absence of cardiomyocytes,indicating that DFAT cells have the potential to differentiate to cardiomyocyte lineage. In a rat acute myocardial infarction model,transplanted DFAT cells were efficiently accumulated in infarcted myocardium and expressed cardiac sarcomeric actin at 8 weeks after the cell transplantation. The transplantation of DFAT cells significantly (ptextless0.05) increased capillary density in the infarcted area when compared with hearts from saline-injected control rats. We demonstrated that DFAT cells have the ability to differentiate to cardiomyocyte-like cells in vitro and in vivo. In addition,transplantation of DFAT cells led to neovascuralization in rats with myocardial infarction. We propose that DFAT cells represent a promising candidate cell source for cardiomyocyte regeneration in severe ischemic heart disease.
View Publication
文献
Chin ACP et al. (JUN 2010)
Stem cells and development 19 6 753--61
Defined and serum-free media support undifferentiated human embryonic stem cell growth.
Four commercially available serum-free and defined culture media tested on 2 human embryonic stem cell (hESC) lines were all found to support undifferentiated growth for textgreater10 continuous passages. For hESC cultured with defined StemPro and mTeSR1 media,the cells were maintained feeder-free on culture dishes coated with extracellular matrices (ECMs) with no requirement of feeder-conditioned media (CM). For xeno-free serum replacer (XSR),HEScGRO,and KnockOut media,mitotically inactivated human foreskin feeders (hFFs) were required for hESC growth. Under the different media conditions,cells continued to exhibit alkaline phosphatase activity and expressed undifferentiated hESC markers Oct-4,stage-specific embryonic antigens 4 (SSEA-4),and Tra-1-60. In addition,hESC maintained the expression of podocalyxin-like protein-1 (PODXL),an antigen recently reported in another study to be present in undifferentiated hESC. The cytotoxic antibody mAb 84 binds via PODXL expressed on hESC surface and kills textgreater90% of hESC within 45 min of incubation. When these cells were spontaneously differentiated to form embryoid bodies,derivatives representing the 3 germ layers were obtained. Injection of hESC into animal models resulted in teratomas and the formation of tissue types indicative of ectodermal,endodermal,and mesodermal lineages were observed. Our data also suggested that StemPro and mTeSR1 media were more optimal for hESC proliferation compared to cells grown on CM because the growth rate of hESC increased by 30%-40%,higher split ratio was thus required for weekly passaging. This is advantageous for the large-scale cultivation of hESC required in clinical applications.
View Publication
文献
Hockemeyer D et al. (SEP 2009)
Nature biotechnology 27 9 851--7
Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases.
Realizing the full potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) requires efficient methods for genetic modification. However,techniques to generate cell type-specific lineage reporters,as well as reliable tools to disrupt,repair or overexpress genes by gene targeting,are inefficient at best and thus are not routinely used. Here we report the highly efficient targeting of three genes in human pluripotent cells using zinc-finger nuclease (ZFN)-mediated genome editing. First,using ZFNs specific for the OCT4 (POU5F1) locus,we generated OCT4-eGFP reporter cells to monitor the pluripotent state of hESCs. Second,we inserted a transgene into the AAVS1 locus to generate a robust drug-inducible overexpression system in hESCs. Finally,we targeted the PITX3 gene,demonstrating that ZFNs can be used to generate reporter cells by targeting non-expressed genes in hESCs and hiPSCs.
View Publication
文献
Lanfer B et al. (OCT 2009)
Biomaterials 30 30 5950--8
The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices.
Cell-matrix interactions are paramount for the successful repair and regeneration of damaged and diseased tissue. Since many tissues have an anisotropic architecture,it has been proposed that aligned extracellular matrix (ECM) structures in particular could guide and support the differentiation of resident mesenchymal stem and progenitor cells (MSCs). We therefore created aligned collagen type I structures using a microfluidic set-up with the aim to assess their impact on MSC growth and differentiation. In addition,we refined our aligned collagen matrices by incorporating the glycosaminoglycan (GAG) heparin to demonstrate the versatility of the applied methodology to study multiple ECM components in a single system. Our reconstituted,aligned ECM structures maintained and allowed multilineage (osteogenic/adipogenic/chondrogenic) differentiation of MSCs. Most noticeable was the observation that during osteogenesis,aligned collagen substrates choreographed ordered matrix mineralization. Likewise,myotube assembly of C2C12 cells was profoundly influenced by aligned topographic features resulting in enhanced myotube organization and length. Our results shed light on the regulation of MSCs through directional ECM structures and demonstrate the versatility of these cell culture platforms for guiding the morphogenesis of tissue types with anisotropic structures.
View Publication
文献
Hui Z et al. (OCT 2009)
Stem Cells 27 10 2435--2445
Lack of ABCG2 expression and side population properties in human pluripotent stem cells
The multidrug transporter ABCG2 in cell membranes enables various stem cells and cancer cells to efflux chemicals,including the fluorescent dye Hoechst 33342. The Hoechst(-) cells can be sorted out as a side population with stem cell properties. Abcg2 expression in mouse embryonic stem cells (ESCs) reduces accumulation of DNA-damaging metabolites in the cells,which helps prevent cell differentiation. Surprisingly,we found that human ESCs do not express ABCG2 and cannot efflux Hoechst. In contrast,trophoblasts and neural epithelial cells derived from human ESCs are ABCG2(+) and Hoechst(-). Human ESCs ectopically expressing ABCG2 become Hoechst(-),more tolerant of toxicity of mitoxantrone,a substrate of ABCG2,and more capable of self-renewal in basic fibroblast growth factor (bFGF)-free condition than control cells. However,Hoechst(low) cells sorted as a small subpopulation from human ESCs express lower levels of pluripotency markers than the Hoechst(high) cells. Similar results were observed with human induced pluripotent stem cells. Conversely,mouse ESCs are Abcg2(+) and mouse trophoblasts,Abcg2(-). Thus,absence of ABCG2 is a novel feature of human pluripotent stem cells,which distinguishes them from many other stem cells including mouse ESCs,and may be a reason why they are sensitive to suboptimal culture conditions.
View Publication
文献
Eminli S et al. (SEP 2009)
Nature genetics 41 9 968--76
Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells.
The reprogramming of somatic cells into induced pluripotent stem (iPS) cells upon overexpression of the transcription factors Oct4,Sox2,Klf4 and cMyc is inefficient. It has been assumed that the somatic differentiation state provides a barrier for efficient reprogramming; however,direct evidence for this notion is lacking. Here,we tested the potential of mouse hematopoietic cells at different stages of differentiation to be reprogrammed into iPS cells. We show that hematopoietic stem and progenitor cells give rise to iPS cells up to 300 times more efficiently than terminally differentiated B and T cells do,yielding reprogramming efficiencies of up to 28%. Our data provide evidence that the differentiation stage of the starting cell has a critical influence on the efficiency of reprogramming into iPS cells. Moreover,we identify hematopoietic progenitors as an attractive cell type for applications of iPS cell technology in research and therapy.
View Publication
文献
Frecha C et al. (OCT 2009)
Blood 114 15 3173--80
Efficient and stable transduction of resting B lymphocytes and primary chronic lymphocyte leukemia cells using measles virus gp displaying lentiviral vectors.
Up to now,no lentiviral vector (LV) tool existed to govern efficient and stable gene delivery into quiescent B lymphocytes,which hampers its application in gene therapy and immunotherapy areas. Here,we report that LVs incorporating measles virus (MV) glycoproteins,H and F,on their surface allowed transduction of 50% of quiescent B cells,which are not permissive to VSVG-LV transduction. This high transduction level correlated with B-cell SLAM expression and was not at cost of cell-cycle entry or B-cell activation. Moreover,the naive and memory phenotypes of transduced resting B cells were maintained. Importantly,H/F-LVs represent the first tool permitting stable transduction of leukemic cancer cells,B-cell chronic lymphocytic leukemia cells,blocked in G(0)/G(1) early phase of the cell cycle. Thus,H/F-LV transduction overcomes the limitations of current LVs by making B cell-based gene therapy and immunotherapy applications feasible. These new LVs will facilitate antibody production and the study of gene functions in these healthy and cancer immune cells.
View Publication
文献
Shimono Y et al. (AUG 2009)
Cell 138 3 592--603
Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells.
Human breast tumors contain a breast cancer stem cell (BCSC) population with properties reminiscent of normal stem cells. We found 37 microRNAs that were differentially expressed between human BCSCs and nontumorigenic cancer cells. Three clusters,miR-200c-141,miR-200b-200a-429,and miR-183-96-182 were downregulated in human BCSCs,normal human and murine mammary stem/progenitor cells,and embryonal carcinoma cells. Expression of BMI1,a known regulator of stem cell self-renewal,was modulated by miR-200c. miR-200c inhibited the clonal expansion of breast cancer cells and suppressed the growth of embryonal carcinoma cells in vitro. Most importantly,miR-200c strongly suppressed the ability of normal mammary stem cells to form mammary ducts and tumor formation driven by human BCSCs in vivo. The coordinated downregulation of three microRNA clusters and the similar functional regulation of clonal expansion by miR-200c provide a molecular link that connects BCSCs with normal stem cells.
View Publication
文献
Chung J et al. (AUG 2009)
Current protocols in stem cell biology Chapter 5 August Unit 5A.3
Magnetic resonance imaging of human embryonic stem cells.
Magnetic resonance imaging (MRI) may emerge as an ideal non-invasive imaging modality to monitor stem cell therapy in the failing heart. This imaging modality generates any arbitrary tomographic view at high spatial and temporal resolution with exquisite intrinsic tissue contrast. This capability enables robust evaluation of both the cardiac anatomy and function. Traditionally,superparamagnetic iron oxide nanoparticle (SPIO) has been widely used for cellular MRI due to SPIO's ability to enhance sensitivity of MRI by inducing remarkable hypointense,negative signal,blooming effect" on T2*-weighted MRI acquisition. Recently�
View Publication
文献
Eremeev AV et al. ( )
Doklady biological sciences : proceedings of the Academy of Sciences of the USSR,Biological sciences sections / translated from Russian 426 293--5
Derivation of a novel human embryonic stem cell line under serum-free and feeder-free conditions.
Pierre-Louis O et al. (OCT 2009)
Stem cells (Dayton,Ohio) 27 10 2552--62
Dual SP/ALDH functionalities refine the human hematopoietic Lin-CD34+CD38- stem/progenitor cell compartment.
Identification of prevalent specific markers is crucial to stem/progenitor cell purification. Determinants such as the surface antigens CD34 and CD38 are traditionally used to analyze and purify hematopoietic stem/progenitor cells (HSCs/HPCs). However,the variable expression of these membrane antigens poses some limitations to their use in HSC/HPC purification. Techniques based on drug/stain efflux through the ATP-binding cassette (ABC)G2 pump (side population [SP] phenotype) or on detection of aldehyde dehydrogenase (ALDH) activity have been independently developed and distinguish the SP and ALDH(Bright) (ALDH(Br)) cell subsets for their phenotype and proliferative capability. In this study,we developed a multiparametric flow cytometric method associating both SP and ALDH activities on human lineage negative (Lin(-)) bone marrow cells and sorted different cell fractions according to their SP/ALDH activity level. We find that Lin(-)CD34(+)CD38(Low/-) cells are found throughout the spectrum of ALDH expression and are enriched especially in ALDH(Br) cells when associated with SP functionality (SP/ALDH(Br) fraction). Furthermore,the SP marker identified G(0) cells in all ALDH fractions,allowing us to sort quiescent cells regardless of ALDH activity. Moreover,we show that,within the Lin(-)CD34(+)CD38(-)ALDH(Br) population,the SP marker identifies cells with higher primitive characteristics,in terms of stemness-related gene expression and in vitro and in vivo proliferative potential,than the Lin(-)CD34(+) CD38(-)ALDH(Br) main population cells. In conclusion,our study shows that the coexpression of SP and ALDH markers refines the Lin(-)CD34(+)CD38(-) hematopoietic compartment and identifies an SP/ALDH(Br) cell subset enriched in quiescent primitive HSCs/HPCs.
View Publication
文献
Kolle G et al. (OCT 2009)
Stem Cells 27 10 2446--56
Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling.
Surface marker expression forms the basis for characterization and isolation of human embryonic stem cells (hESCs). Currently,there are few well-defined protein epitopes that definitively mark hESCs. Here we combine immunotranscriptional profiling of hESC lines with membrane-polysome translation state array analysis (TSAA) to determine the full set of genes encoding potential hESC surface marker proteins. Three independently isolated hESC lines (HES2,H9,and MEL1) grown under feeder and feeder-free conditions were sorted into subpopulations by fluorescence-activated cell sorting based on coimmunoreactivity to the hESC surface markers GCTM-2 and CD9. Colony-forming assays confirmed that cells displaying high coimmunoreactivity to GCTM-2 and CD9 constitute an enriched subpopulation displaying multiple stem cell properties. Following microarray profiling,820 genes were identified that were common to the GCTM-2(high)/CD9(high) stem cell-like subpopulation. Membrane-polysome TSAA analysis of hESCs identified 1,492 mRNAs encoding actively translated plasma membrane and secreted proteins. Combining these data sets,88 genes encode proteins that mark the pluripotent subpopulation,of which only four had been previously reported. Cell surface immunoreactivity was confirmed for two of these markers: TACSTD1/EPCAM and CDH3/P-Cadherin,with antibodies for EPCAM able to enrich for pluripotent hESCs. This comprehensive listing of both hESCs and spontaneous differentiation-associated transcripts and survey of translated membrane-bound and secreted proteins provides a valuable resource for future study into the role of the extracellular environment in both the maintenance of pluripotency and directed differentiation.
View Publication