Braam SR et al. (OCT 2009)
Trends in pharmacological sciences 30 10 536--45
Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery.
Stem cells derived from pre-implantation human embryos or from somatic cells by reprogramming are pluripotent and self-renew indefinitely in culture. Pluripotent stem cells are unique in being able to differentiate to any cell type of the human body. Differentiation towards the cardiac lineage has attracted significant attention,initially with a strong focus on regenerative medicine. Although an important research area,the heart has proven challenging to repair by cardiomyocyte replacement. However,the ability to reprogramme adult cells to pluripotent stem cells and genetically manipulate stem cells presented opportunities to develop models of human disease. The availability of human cardiomyocytes from stem cell sources is expected to accelerate the discovery of cardiac drugs and safety pharmacology by offering more clinically relevant human culture models than presently available. Here we review the state-of-the-art using stem cell-derived human cardiomyocytes in drug discovery,drug safety pharmacology,and regenerative medicine.
View Publication
Defects in osteoblast function but no changes in long-term repopulating potential of hematopoietic stem cells in a mouse chronic inflammatory arthritis model.
Recent studies support the notion that there is an intricate relationship between hematopoiesis and bone homeostasis in normal steady states. Using mice undergoing chronic inflammatory arthritis,we investigated the relationship between hematopoiesis and bone homeostasis in pathologic conditions. We demonstrate that mice undergoing chronic inflammatory arthritis displayed osteoporosis resulting from a severe defect in osteoblast function. Despite the defective osteoblast function,however,the hematopoietic stem cells from these mice exhibited normal properties in either long-term repopulation or cell cycling. Therefore,the bone-forming capacity of osteoblasts is distinct from their ability to maintain hematopoietic stem cells in chronic inflammatory conditions.
View Publication
文献
Volanakis EJ et al. (NOV 2009)
Blood 114 20 4451--9
Stage-specific Arf tumor suppression in Notch1-induced T-cell acute lymphoblastic leukemia.
Frequent hallmarks of T-cell acute lymphoblastic leukemia (T-ALL) include aberrant NOTCH signaling and deletion of the CDKN2A locus,which contains 2 closely linked tumor suppressor genes (INK4A and ARF). When bone marrow cells or thymocytes transduced with a vector encoding the constitutively activated intracellular domain of Notch1 (ICN1) are expanded ex vivo under conditions that support T-cell development,cultured progenitors rapidly induce CD4+/CD8+ T-ALLs after infusion into healthy syngeneic mice. Under these conditions,enforced ICN1 expression also drives formation of T-ALLs in unconditioned CD-1 nude mice,bypassing any requirements for thymic maturation. Retention of Arf had relatively modest activity in suppressing the formation of T-ALLs arising from bone marrow-derived ICN1+ progenitors in which the locus is epigenetically silenced,and all resulting Arf (+/+) tumors failed to express the p19(Arf) protein. In striking contrast,retention of Arf in thymocyte-derived ICN1+ donor cells significantly delayed disease onset and suppressed the penetrance of T-ALL. Use of cultured thymocyte-derived donor cells expressing a functionally null Arf-GFP knock-in allele confirmed that ICN1 signaling can induce Arf expression in vivo. Arf activation by ICN1 in T cells thereby provides stage-specific tumor suppression but also a strong selective pressure for deletion of the locus in T-ALL.
View Publication
文献
Yu J et al. (JAN 2009)
PLoS ONE 4 9 e7040
nAChRs mediate human embryonic stem cell-derived endothelial cells: proliferation, apoptosis, and angiogenesis.
BACKGROUND: Many patients with ischemic heart disease have cardiovascular risk factors such as cigarette smoking. We tested the effect of nicotine (a key component of cigarette smoking) on the therapeutic effects of human embryonic stem cell-derived endothelial cells (hESC-ECs).backslashnbackslashnMETHODS AND RESULTS: To induce endothelial cell differentiation,undifferentiated hESCs (H9 line) underwent 4-day floating EB formation and 8-day outgrowth differentiation in EGM-2 media. After 12 days,CD31(+) cells (13.7+/-2.5%) were sorted by FACScan and maintained in EGM-2 media for further differentiation. After isolation,these hESC-ECs expressed endothelial specific markers such as vWF (96.3+/-1.4%),CD31 (97.2+/-2.5%),and VE-cadherin (93.7+/-2.8%),form vascular-like channels,and incorporated DiI-labeled acetylated low-density lipoprotein (DiI-Ac-LDL). Afterward,5x10(6) hESC-ECs treated for 24 hours with nicotine (10(-8) M) or PBS (as control) were injected into the hearts of mice undergoing LAD ligation followed by administration for two weeks of vehicle or nicotine (100 microg/ml) in the drinking water. Surprisingly,bioluminescence imaging (BLI) showed significant improvement in the survival of transplanted hESC-ECs in the nicotine treated group at 6 weeks. Postmortem analysis confirmed increased presence of small capillaries in the infarcted zones. Finally,in vitro mechanistic analysis suggests activation of the MAPK and Akt pathways following activation of nicotinic acetylcholine receptors (nAChRs).backslashnbackslashnCONCLUSIONS: This study shows for the first time that short-term systemic administrations of low dose nicotine can improve the survival of transplanted hESC-ECs,and enhance their angiogenic effects in vivo. Furthermore,activation of nAChRs has anti-apoptotic,angiogenic,and proliferative effects through MAPK and Akt signaling pathways.
View Publication
A novel role for ??-secretase in the formation of primitive streak-like intermediates from ES cells in culture
gamma-Secretase is a membrane-associated protease with multiple intracellular targets,a number of which have been shown to influence embryonic development and embryonic stem (ES) cell differentiation. This paper describes the use of the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) to evaluate the role of gamma-secretase in the differentiation of pluripotent stem cells to the germ lineages. The addition of DAPT did not prevent the formation of primitive ectoderm-like cells from ES cells in culture. In contrast,the addition of DAPT during primitive ectoderm-like cell differentiation interfered with the ability of both serum and BMP4 to induce a primitive streak-like intermediate and resulted in the preferential formation of neurectoderm. Similarly,DAPT reduced the formation of primitive streak-like intermediates from differentiating human ES cells; the culture conditions used resulted in a population enriched in human surface ectoderm. These data suggest that gamma-secretase may form part of the general pathway by which mesoderm is specified within the primitive streak. The addition of an E-cadherin neutralizing antibody was able to partially reverse the effect of DAPT,suggesting that DAPT may be preventing the formation of primitive streak-like intermediates and promoting neurectoderm differentiation by stabilizing E-cadherin and preventing its proteolysis.
View Publication
文献
Vauchez K et al. (NOV 2009)
Molecular therapy : the journal of the American Society of Gene Therapy 17 11 1948--58
Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities.
Aldehyde dehydrogenase 1A1 (ALDH) activity is one hallmark of human bone marrow (BM),umbilical cord blood (UCB),and peripheral blood (PB) primitive progenitors presenting high reconstitution capacities in vivo. In this study,we have identified ALDH(+) cells within human skeletal muscles,and have analyzed their phenotypical and functional characteristics. Immunohistofluorescence analysis of human muscle tissue sections revealed rare endomysial cells. Flow cytometry analysis using the fluorescent substrate of ALDH,Aldefluor,identified brightly stained (ALDH(br)) cells with low side scatter (SSC(lo)),in enzymatically dissociated muscle biopsies,thereafter abbreviated as SMALD(+) (for skeletal muscle ALDH(+)) cells. Phenotypical analysis discriminated two sub-populations according to CD34 expression: SMALD(+)/CD34(-) and SMALD(+)/CD34(+) cells. These sub-populations did not initially express endothelial (CD31),hematopoietic (CD45),and myogenic (CD56) markers. Upon sorting,however,whereas SMALD(+)/CD34(+) cells developed in vitro as a heterogeneous population of CD56(-) cells able to differentiate in adipoblasts,the SMALD(+)/CD34(-) fraction developed in vitro as a highly enriched population of CD56(+) myoblasts able to form myotubes. Moreover,only the SMALD(+)/CD34(-) population maintained a strong myogenic potential in vivo upon intramuscular transplantation. Our results suggest that ALDH activity is a novel marker for a population of new human skeletal muscle progenitors presenting a potential for cell biology and cell therapy.
View Publication
文献
Krawetz R et al. (AUG 2010)
Tissue engineering. Part C,Methods 16 4 573--582
Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors.
Since the derivation of human embryonic stem (hES) cells,their translation to clinical therapies has been met with several challenges,including the need for large-scale expansion and controlled differentiation processes. Suspension bioreactors are an effective alternative to static culture flasks as they enable the generation of clinically relevant cell numbers with greater efficacy in a controlled culture system. We,along with other groups,have developed bioreactor protocols for the expansion of pluripotent murine ES cells. Here we present a novel bioreactor protocol that yields a 25-fold expansion of hES cells over 6 days. Using immunofluorescence,flow cytometry,and teratoma formation assays,we demonstrated that these bioreactor cultures retained high levels of pluripotency and a normal karyotype. Importantly,the use of bioreactors enables the expansion of hES cells in the absence of feeder layers or matrices,which will facilitate the adaptation of good manufacturing process (GMP) standards to the development of hES cell therapies.
View Publication
文献
Mousa SA et al. (MAR 2010)
Cancer Letters 289 2 208--216
Stress resistant human embryonic stem cells as a potential source for the identification of novel cancer stem cell markers
Cancer stem cells are known for their inherent resistance to therapy. Here we investigated whether normal stem cells with acquired resistance to stress can be used to identify novel markers of cancer stem cells. For this,we generated a human embryonic stem cell line resistant to Trichostatin A and analyzed changes in its gene expression. The resistant cells over-expressed various genes associated with tumor aggressiveness,many of which are also expressed in the CD133+ glioma cancer stem cells. These findings suggest that stress-resistant stem cells generated in vitro may be useful for the discovery of novel markers of cancer stem cells.
View Publication
文献
Xu H et al. (OCT 2009)
Blood 114 17 3557--66
Loss of the Rho GTPase activating protein p190-B enhances hematopoietic stem cell engraftment potential.
Hematopoietic stem cell (HSC) engraftment is a multistep process involving HSC homing to bone marrow,self-renewal,proliferation,and differentiation to mature blood cells. Here,we show that loss of p190-B RhoGTPase activating protein,a negative regulator of Rho GTPases,results in enhanced long-term engraftment during serial transplantation. This effect is associated with maintenance of functional HSC-enriched cells. Furthermore,loss of p190-B led to marked improvement of HSC in vivo repopulation capacity during ex vivo culture without altering proliferation and multilineage differentiation of HSC and progeny. Transcriptional analysis revealed that p190-B deficiency represses the up-regulation of p16(Ink4a) in HSCs in primary and secondary transplantation recipients,providing a possible mechanism of p190-B-mediated HSC functions. Our study defines p190-B as a critical transducer element of HSC self-renewal activity and long-term engraftment,thus suggesting that p190-B is a target for HSC-based therapies requiring maintenance of engraftment phenotype.
View Publication
CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia.
OBJECTIVE: Bone marrow-derived mononuclear cells (BMCs) improve the functional recovery after ischemia. However,BMCs comprise a heterogeneous mixture of cells,and it is not known which cell types are responsible for the induction of neovascularization after cell therapy. Because cell recruitment is critically dependent on the expression of the SDF-1-receptor CXCR4,we examined whether the expression of CXCR4 may identify a therapeutically active population of BMCs. METHODS AND RESULTS: Human CXCR4(+) and CXCR4(-) BMCs were sorted by magnetic beads. CXCR4(+) BMCs showed a significantly higher invasion capacity under basal conditions and after SDF-1 stimulation. Hematopoietic or mesenchymal colony-forming capacity did not differ between CXCR4(+) and CXCR4(-) BMCs. Injection of CXCR4(+) BMCs in mice after induction of hindlimb ischemia significantly improved the recovery of perfusion compared to injection of CXCR4(-) BMCs. Likewise,capillary density was significantly increased in CXCR4(+) BMC-treated mice. Because part of the beneficial effects of cell therapy were attributed to the release of paracrine effectors,we analyzed BMC supernatants for secreted factors. Importantly,supernatants of CXCR4(+) BMCs were enriched in the proangiogenic cytokines HGF and PDGF-BB. CONCLUSIONS: CXCR4(+) BMCs exhibit an increased therapeutic potential for blood flow recovery after acute ischemia. Mechanistically,their higher migratory capacity and their increased release of paracrine factors may contribute to enhanced tissue repair.
View Publication
文献
Steiner LA et al. (OCT 2009)
Molecular and cellular biology 29 20 5399--412
Chromatin architecture and transcription factor binding regulate expression of erythrocyte membrane protein genes.
Erythrocyte membrane protein genes serve as excellent models of complex gene locus structure and function,but their study has been complicated by both their large size and their complexity. To begin to understand the intricate interplay of transcription,dynamic chromatin architecture,transcription factor binding,and genomic organization in regulation of erythrocyte membrane protein genes,we performed chromatin immunoprecipitation (ChIP) coupled with microarray analysis and ChIP coupled with massively parallel DNA sequencing in both erythroid and nonerythroid cells. Unexpectedly,most regions of GATA-1 and NF-E2 binding were remote from gene promoters and transcriptional start sites,located primarily in introns. Cooccupancy with FOG-1,SCL,and MTA-2 was found at all regions of GATA-1 binding,with cooccupancy of SCL and MTA-2 also found at regions of NF-E2 binding. Cooccupancy of GATA-1 and NF-E2 was found frequently. A common signature of histone H3 trimethylation at lysine 4,GATA-1,NF-E2,FOG-1,SCL,and MTA-2 binding and consensus GATA-1-E-box binding motifs located 34 to 90 bp away from NF-E2 binding motifs was found frequently in erythroid cell-expressed genes. These results provide insights into our understanding of membrane protein gene regulation in erythropoiesis and the regulation of complex genetic loci in erythroid and nonerythroid cells and identify numerous candidate regions for mutations associated with membrane-linked hemolytic anemia.
View Publication