Kang S et al. (APR 2009)
Molecular and cellular biology 29 8 2105--17
Fibroblast growth factor receptor 3 associates with and tyrosine phosphorylates p90 RSK2, leading to RSK2 activation that mediates hematopoietic transformation.
Dysregulation of the receptor tyrosine kinase fibroblast growth factor receptor 3 (FGFR3) plays a pathogenic role in a number of human hematopoietic malignancies and solid tumors. These include t(4;14) multiple myeloma associated with ectopic expression of FGFR3 and t(4;12)(p16;p13) acute myeloid leukemia associated with expression of a constitutively activated fusion tyrosine kinase,TEL-FGFR3. We recently reported that FGFR3 directly tyrosine phosphorylates RSK2 at Y529,which consequently regulates RSK2 activation. Here we identified Y707 as an additional tyrosine in RSK2 that is phosphorylated by FGFR3. Phosphorylation at Y707 contributes to RSK2 activation,through a putative disruption of the autoinhibitory alphaL-helix on the C terminus of RSK2,unlike Y529 phosphorylation,which facilitates ERK binding. Moreover,we found that FGFR3 interacts with RSK2 through residue W332 in the linker region of RSK2 and that this association is required for FGFR3-dependent phosphorylation of RSK2 at Y529 and Y707,as well as the subsequent RSK2 activation. Furthermore,in a murine bone marrow transplant assay,genetic deficiency in RSK2 resulted in a significantly delayed and attenuated myeloproliferative syndrome induced by TEL-FGFR3 as compared with wild-type cells,suggesting a critical role of RSK2 in FGFR3-induced hematopoietic transformation. Our current and previous findings represent a paradigm for tyrosine phosphorylation-dependent regulation of serine-threonine kinases.
View Publication
文献
Tondelli B et al. (MAR 2009)
The American journal of pathology 174 3 727--35
Fetal liver cells transplanted in utero rescue the osteopetrotic phenotype in the oc/oc mouse.
Autosomal recessive osteopetrosis (ARO) is a group of genetic disorders that involve defects that preclude the normal function of osteoclasts,which differentiate from hematopoietic precursors. In half of human cases,ARO is the result of mutations in the TCIRG1 gene,which codes for a subunit of the vacuolar proton pump that plays a fundamental role in the acidification of the cell-bone interface. Functional mutations of this pump severely impair the resorption of bone mineral. Although postnatal hematopoietic stem cell transplantation can partially rescue the hematological phenotype of ARO,other stigmata of the disease,such as secondary neurological and growth defects,are not reversed. For this reason,ARO is a paradigm for genetic diseases that would benefit from effective prenatal treatment. Using the oc/oc mutant mouse,a murine model whose osteopetrotic phenotype closely recapitulates human TCIRG1-dependent ARO,we report that in utero transplantation of adult bone marrow hematopoietic stem cells can correct the ARO phenotype in a limited number of mice. Here we report that in utero injection of allogeneic fetal liver cells,which include hematopoietic stem cells,into oc/oc mouse fetuses at 13.5 days post coitum produces a high level of engraftment,and the oc/oc phenotype is completely rescued in a high percentage of these mice. Therefore,oc/oc pathology appears to be particularly sensitive to this form of early treatment of the ARO genetic disorder.
View Publication
文献
Gekas C et al. (APR 2009)
Blood 113 15 3461--71
Mef2C is a lineage-restricted target of Scl/Tal1 and regulates megakaryopoiesis and B-cell homeostasis.
The basic helix-loop-helix transcription factor stem cell leukemia gene (Scl) is a master regulator for hematopoiesis essential for hematopoietic specification and proper differentiation of the erythroid and megakaryocyte lineages. However,the critical downstream targets of Scl remain undefined. Here,we identified a novel Scl target gene,transcription factor myocyte enhancer factor 2 C (Mef2C) from Scl(fl/fl) fetal liver progenitor cell lines. Analysis of Mef2C(-/-) embryos showed that Mef2C,in contrast to Scl,is not essential for specification into primitive or definitive hematopoietic lineages. However,adult VavCre(+)Mef2C(fl/fl) mice exhibited platelet defects similar to those observed in Scl-deficient mice. The platelet counts were reduced,whereas platelet size was increased and the platelet shape and granularity were altered. Furthermore,megakaryopoiesis was severely impaired in vitro. Chromatin immunoprecipitation microarray hybridization analysis revealed that Mef2C is directly regulated by Scl in megakaryocytic cells,but not in erythroid cells. In addition,an Scl-independent requirement for Mef2C in B-lymphoid homeostasis was observed in Mef2C-deficient mice,characterized as severe age-dependent reduction of specific B-cell progenitor populations reminiscent of premature aging. In summary,this work identifies Mef2C as an integral member of hematopoietic transcription factors with distinct upstream regulatory mechanisms and functional requirements in megakaryocyte and B-lymphoid lineages.
View Publication
文献
Hakak Y et al. (MAY 2009)
Journal of leukocyte biology 85 5 837--43
The role of the GPR91 ligand succinate in hematopoiesis.
Regulation of cellular metabolism by the citric acid cycle occurs in the mitochondria. However,the citric acid cycle intermediate succinate was shown recently to be a ligand for the G-protein-coupled receptor GPR91. Here,we describe a role for succinate and its receptor in the stimulation of hematopoietic progenitor cell (HPC) growth. GPR91 mRNA and protein expression were detected in human bone marrow CD34+ progenitor cells,as well as in erythroid and megakaryocyte cultures and the erythroleukemic cell line TF-1. Treatment of these cell cultures with succinate resulted in increased proliferation rates. The proliferation response of TF-1 cells was pertussis toxin (PTX)-sensitive,suggesting a role for Gi signaling. Proliferation was also blocked when TF-1 cells were transfected with small interfering RNA specific for GPR91. Succinate stimulated activation of the Erk MAPK pathway and inositol phosphate accumulation in a PTX-sensitive manner. Pretreatment of TF-1 cells with the Erk1/2 kinase (MEK) inhibitor PD98059 blocked the proliferation response. Succinate treatment additionally protected TF-1 cells from cell death induced by serum deprivation. Finally,in vivo administration of succinate was found to elevate the levels of hemoglobin,platelets,and neutrophils in a mouse model of chemotherapy-induced myelosuppression. These results suggest that succinate-GPR91 signaling is capable of promoting HPC development.
View Publication
文献
Souroullas GP et al. (FEB 2009)
Cell stem cell 4 2 180--6
Adult hematopoietic stem and progenitor cells require either Lyl1 or Scl for survival.
Scl and Lyl1 encode two related basic-helix-loop-helix transcription factors implicated in T cell acute lymphoblastic leukemia. Previous studies showed that Scl is essential for embryonic and adult erythropoiesis,while Lyl1 is important for B cell development. Single-knockout mice have not revealed an essential function for Scl or Lyl1 in adult hematopoietic stem cells (HSCs). To determine if maintenance of HSCs in single-knockout mice is due to functional redundancy,we generated Lyl1;Scl-conditional double-knockout mice. Here,we report a striking genetic interaction between the two genes,with a clear dose dependence for the presence of Scl or Lyl1 alleles for HSC function. Bone marrow repopulation assays and analyses demonstrated rapid loss of hematopoietic progenitors due to apoptosis. The function of HSCs could be rescued by a single allele of Lyl1 but not Scl. These results show that expression of at least one of these factors is essential for maintenance of adult HSC function.
View Publication
文献
Charafe-Jauffret E et al. (FEB 2009)
Cancer research 69 4 1302--13
Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature.
Tumors may be initiated and maintained by a cellular subcomponent that displays stem cell properties. We have used the expression of aldehyde dehydrogenase as assessed by the ALDEFLUOR assay to isolate and characterize cancer stem cell (CSC) populations in 33 cell lines derived from normal and malignant mammary tissue. Twenty-three of the 33 cell lines contained an ALDEFLUOR-positive population that displayed stem cell properties in vitro and in NOD/SCID xenografts. Gene expression profiling identified a 413-gene CSC profile that included genes known to play a role in stem cell function,as well as genes such as CXCR1/IL-8RA not previously known to play such a role. Recombinant interleukin-8 (IL-8) increased mammosphere formation and the ALDEFLUOR-positive population in breast cancer cell lines. Finally,we show that ALDEFLUOR-positive cells are responsible for mediating metastasis. These studies confirm the hierarchical organization of immortalized cell lines,establish techniques that can facilitate the characterization of regulatory pathways of CSCs,and identify potential stem cell markers and therapeutic targets.
View Publication
文献
Popovic R et al. (APR 2009)
Blood 113 14 3314--22
Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization.
Chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene produce chimeric proteins that cause abnormal expression of a subset of HOX genes and leukemia development. Here,we show that MLL normally regulates expression of mir-196b,a hematopoietic microRNA located within the HoxA cluster,in a pattern similar to that of the surrounding 5' Hox genes,Hoxa9 and Hoxa10,during embryonic stem (ES) cell differentiation. Within the hematopoietic lineage,mir-196b is most abundant in short-term hematopoietic stem cells and is down-regulated in more differentiated hematopoietic cells. Leukemogenic MLL fusion proteins cause overexpression of mir-196b,while treatment of MLL-AF9 transformed bone marrow cells with mir-196-specific antagomir abrogates their replating potential in methylcellulose. This demonstrates that mir-196b function is necessary for MLL fusion-mediated immortalization. Furthermore,overexpression of mir-196b was found specifically in patients with MLL associated leukemias as determined from analysis of 55 primary leukemia samples. Overexpression of mir-196b in bone marrow progenitor cells leads to increased proliferative capacity and survival,as well as a partial block in differentiation. Our results suggest a mechanism whereby increased expression of mir-196b by MLL fusion proteins significantly contributes to leukemia development.
View Publication
文献
Ali N et al. (APR 2009)
Blood 113 16 3690--5
Forward RNAi screens in primary human hematopoietic stem/progenitor cells.
The mechanisms regulating key fate decisions such as self-renewal and differentiation in hematopoietic stem and progenitor cells (HSPC) remain poorly understood. We report here a screening strategy developed to assess modulators of human hematopoiesis using a lentiviral short hairpin RNA (shRNA) library transduced into cord blood-derived stem/progenitor cells. To screen for modifiers of self-renewal/differentiation,we used the limited persistence of HSPCs under ex vivo culture conditions as a baseline for functional selection of shRNAs conferring enhanced maintenance or expansion of the stem/progenitor potential. This approach enables complex,pooled screens in large numbers of cells. Functional selection identified novel specific gene targets (exostoses 1) or shRNA constructs capable of altering human hematopoietic progenitor differentiation or stem cell expansion,respectively,thereby demonstrating the potential of this forward screening approach in primary human stem cell populations.
View Publication
文献
Povsic TJ et al. (FEB 2009)
American heart journal 157 2 335--44
BACKGROUND: Multiple measures of endothelial progenitor cells (EPCs) have been described,but there has been limited study of the comparability of these assays. We sought to determine the reproducibility of and correlation between alternative EPC assay methodologies. METHODS: We simultaneously assessed EPC numbers in 140 patients undergoing cardiac catheterization using the 2 most commonly used culture techniques: endothelial cell outgrowth and colony-forming unit (CFU). In the final 77 patients,EPCs were also identified on the basis of cell surface marker expression (CD133,CD34,and vascular endothelial growth factor receptor-2 [VEGFR-2]) and aldehyde dehydrogenase (ALDH) activity. RESULTS: Endothelial progenitor cell enumeration based on fluorescence activated cell sorting was more precise than culture assays. There was limited correlation between EPC numbers determined using the 2 common culture-based assays; however,endothelial CFUs correlated with VEGFR-2 and CD34/VEGFR-2-expressing cells. Endothelial progenitor cells defined by expression of CD133,CD34,CD133/CD34,and ALDH activity correlated with each other,but not with VEGFR-2(+) cells. CONCLUSIONS: Endothelial progenitor cells can be broadly classified into 2 classes: VEGFR-2-expressing cells,which give rise to endothelial CFUs,and CD133/CD34 or ALDH(br) cells. These observations underscore the need for better assay standardization and a more precise definition of EPCs in cell therapy research.
View Publication
文献
Povsic TJ et al. (OCT 2009)
Journal of thrombosis and thrombolysis 28 3 259--65
BACKGROUND: Interest in the biology of endogenous progenitor cells (EPCs) continues to grow as evidence of their role in vascular repair mounts. EPC enumeration requires specialized laboratory techniques and is performed immediately after sample acquisition,limiting the clinical contexts in which EPC enumeration can be performed and the ability to increase sample sizes through multi-center participation. METHODS: We compared the numbers of EPCs enumerated in samples processed immediately after acquisition (n = 36) with EPCs enumerated in specimens stored for 24 hours or after cryopreservation of mononuclear cells (MNC) using two EPC identification strategies: cell surface marker expression (CD133/CD34) and aldehyde dehydrogenase activity (ALDH(br) cells). RESULTS: EPCs assessed in fresh samples correlated with EPCs enumerated after whole blood storage (r = 0.699 for CD133(+)CD34(+) cells,r = 0.880 for ALDH(br) cells,P textless 0.005 and P textless 0.0001,respectively) or mononuclear cryopreservation (r = 0.590 for CD133(+)CD34(+) cells,r = 0.894 for ALDH(br) cells,P textless 0.0001 for each); however,correlation based on assessment of ALDH(br) cells was higher (P textless 0.0003 for comparison of correlation coefficients). Initial results from a multi-site clinical trial suggest that EPC enumeration after mononuclear cell cryopreservation is feasible. CONCLUSION: EPC analysis based on ALDH activity is reproducible,even after extended whole blood storage or MNC cryopreservation.
View Publication
文献
Pendino F et al. (APR 2009)
Blood 113 14 3172--81
Functional involvement of RINF, retinoid-inducible nuclear factor (CXXC5), in normal and tumoral human myelopoiesis.
Retinoids triggers differentiation of acute promyelocytic leukemia (APL) blasts by transcriptional regulation of myeloid regulatory genes. Using a microarray approach,we have identified a novel retinoid-responsive gene (CXXC5) encoding a nuclear factor,retinoid-inducible nuclear factor (RINF),that contains a CXXC-type zinc-finger motif. RINF expression correlates with retinoid-induced differentiation of leukemic cells and with cytokine-induced myelopoiesis of normal CD34(+) progenitors. Furthermore,short hairpin RNA (shRNA) interference suggests for this gene a regulatory function in both normal and tumoral myelopoiesis. Interestingly,RINF localizes to 5q31.3,a small region often deleted in myeloid leukemia (acute myeloid leukemia [AML]/myelodysplasia [MDS]) and suspected to harbor one or several tumor suppressor gene.
View Publication
文献
Chan G et al. (APR 2009)
Blood 113 18 4414--24
Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis.
PTPN11,which encodes the tyrosine phosphatase SHP2,is mutated in approximately 35% of patients with juvenile myelomonocytic leukemia (JMML) and at a lower incidence in other neoplasms. To model JMML pathogenesis,we generated knockin mice that conditionally express the leukemia-associated mutant Ptpn11(D61Y). Expression of Ptpn11(D61Y) in all hematopoietic cells evokes a fatal myeloproliferative disorder (MPD),featuring leukocytosis,anemia,hepatosplenomegaly,and factor-independent colony formation by bone marrow (BM) and spleen cells. The Lin(-)Sca1(+)cKit(+) (LSK) compartment is expanded and right-shifted�
View Publication