CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia.
OBJECTIVE: Bone marrow-derived mononuclear cells (BMCs) improve the functional recovery after ischemia. However,BMCs comprise a heterogeneous mixture of cells,and it is not known which cell types are responsible for the induction of neovascularization after cell therapy. Because cell recruitment is critically dependent on the expression of the SDF-1-receptor CXCR4,we examined whether the expression of CXCR4 may identify a therapeutically active population of BMCs. METHODS AND RESULTS: Human CXCR4(+) and CXCR4(-) BMCs were sorted by magnetic beads. CXCR4(+) BMCs showed a significantly higher invasion capacity under basal conditions and after SDF-1 stimulation. Hematopoietic or mesenchymal colony-forming capacity did not differ between CXCR4(+) and CXCR4(-) BMCs. Injection of CXCR4(+) BMCs in mice after induction of hindlimb ischemia significantly improved the recovery of perfusion compared to injection of CXCR4(-) BMCs. Likewise,capillary density was significantly increased in CXCR4(+) BMC-treated mice. Because part of the beneficial effects of cell therapy were attributed to the release of paracrine effectors,we analyzed BMC supernatants for secreted factors. Importantly,supernatants of CXCR4(+) BMCs were enriched in the proangiogenic cytokines HGF and PDGF-BB. CONCLUSIONS: CXCR4(+) BMCs exhibit an increased therapeutic potential for blood flow recovery after acute ischemia. Mechanistically,their higher migratory capacity and their increased release of paracrine factors may contribute to enhanced tissue repair.
View Publication
文献
Armesilla-Diaz A et al. (DEC 2009)
Experimental cell research 315 20 3598--610
p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells.
Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC,from both human and murine origin,has been reported in many studies. MSC transformation depends on the culture conditions,the origin of the cells and the time on culture; however,the precise biological characteristics involved in this process have not been fully defined yet. In this study,we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate,a shorter doubling time and also morphologic and phenotypic changes,as compared to MSC derived from wild-type animals. Furthermore,the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition,not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover,genomic instability,changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition,the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.
View Publication
文献
Lanfer B et al. (OCT 2009)
Biomaterials 30 30 5950--8
The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices.
Cell-matrix interactions are paramount for the successful repair and regeneration of damaged and diseased tissue. Since many tissues have an anisotropic architecture,it has been proposed that aligned extracellular matrix (ECM) structures in particular could guide and support the differentiation of resident mesenchymal stem and progenitor cells (MSCs). We therefore created aligned collagen type I structures using a microfluidic set-up with the aim to assess their impact on MSC growth and differentiation. In addition,we refined our aligned collagen matrices by incorporating the glycosaminoglycan (GAG) heparin to demonstrate the versatility of the applied methodology to study multiple ECM components in a single system. Our reconstituted,aligned ECM structures maintained and allowed multilineage (osteogenic/adipogenic/chondrogenic) differentiation of MSCs. Most noticeable was the observation that during osteogenesis,aligned collagen substrates choreographed ordered matrix mineralization. Likewise,myotube assembly of C2C12 cells was profoundly influenced by aligned topographic features resulting in enhanced myotube organization and length. Our results shed light on the regulation of MSCs through directional ECM structures and demonstrate the versatility of these cell culture platforms for guiding the morphogenesis of tissue types with anisotropic structures.
View Publication
文献
Schumann P et al. (SEP 2009)
Microvascular research 78 2 180--90
Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo.
Implantation of tissue engineering constructs is a promising technique to reconstruct injured tissue. However,after implantation the nutrition of the constructs is predominantly restricted to vascularization. Since cells possess distinct angiogenic potency,we herein assessed whether scaffold vitalization with different cell types improves scaffold vascularization. 32 male balb/c mice received a dorsal skinfold chamber. Angiogenesis,microhemodynamics,leukocyte-endothelial cell interaction and microvascular permeability induced in the host tissue after implantation of either collagen coated poly (L-lactide-co-glycolide) (PLGA) scaffolds (group 4),additionally seeded with osteoblast-like cells (OLCs,group 1),bone marrow mesenchymal stem cells (bmMSCs,group 2) or a combination of OLCs and bmMSCs (group 3) were analyzed repetitively over 14 days using intravital fluorescence microscopy. Apart from a weak inflammatory response in all groups,vascularization was found distinctly accelerated in vitalized scaffolds,indicated by a significantly increased microvascular density (day 6,group 1: 202+/-15 cm/cm(2),group 2: 202+/-12 cm/cm(2),group 3: 194+/-8 cm/cm(2)),when compared with controls (group 4: 72+/-5 cm/cm(2)). This acceleration was independent from the seeded cell type. Immunohistochemistry revealed in vivo VEGF expression in close vicinity to the seeded OLCs and bmMSCs. Therefore,the observed lack of cell type confined differences in the vascularization process suggests that the accelerated vascularization of vitalized scaffolds is VEGF-related rather than dependent on the potential of bmMSCs to differentiate into specific vascular cells.
View Publication
文献
Woods EJ et al. (OCT 2009)
Cryobiology 59 2 150--7
Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use.
Dental pulp is a promising source of mesenchymal stem cells with the potential for cell-mediated therapies and tissue engineering applications. We recently reported that isolation of dental pulp-derived stem cells (DPSC) is feasible for at least 120h after tooth extraction,and that cryopreservation of early passage cultured DPSC leads to high-efficiency recovery post-thaw. This study investigated additional processing and cryobiological characteristics of DPSC,ending with development of procedures for banking. First,we aimed to optimize cryopreservation of established DPSC cultures,with regards to optimizing the cryoprotective agent (CPA),the CPA concentration,the concentration of cells frozen,and storage temperatures. Secondly,we focused on determining cryopreservation characteristics of enzymatically digested tissue as a cell suspension. Lastly,we evaluated the growth,surface markers and differentiation properties of DPSC obtained from intact teeth and undigested,whole dental tissue frozen and thawed using the optimized procedures. In these experiments it was determined that Me(2)SO at a concentration between 1 and 1.5M was the ideal cryopreservative of the three studied. It was also determined that DPSC viability after cryopreservation is not limited by the concentration of cells frozen,at least up to 2x10(6) cells/mL. It was further established that DPSC can be stored at -85 degrees C or -196 degrees C for at least six months without loss of functionality. The optimal results with the least manipulation were achieved by isolating and cryopreserving the tooth pulp tissues,with digestion and culture performed post-thaw. A recovery of cells from textgreater85% of the tissues frozen was achieved and cells isolated post-thaw from tissue processed and frozen with a serum free,defined cryopreservation medium maintained morphological and developmental competence and demonstrated MSC-hallmark trilineage differentiation under the appropriate culture conditions.
View Publication
文献
Romieu-Mourez R et al. (JUN 2009)
Journal of immunology (Baltimore,Md. : 1950) 182 12 7963--73
Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype.
Bone marrow-derived mesenchymal stromal cells (MSC) possess an immune plasticity manifested by either an immunosuppressive or,when activated with IFN-gamma,an APC phenotype. Herein,TLR expression by MSC and their immune regulatory role were investigated. We observed that human MSC and macrophages expressed TLR3 and TLR4 at comparable levels and TLR-mediated activation of MSC resulted in the production of inflammatory mediators such as IL-1beta,IL-6,IL-8/CXCL8,and CCL5. IFN-alpha or IFN-gamma priming up-regulated production of these inflammatory mediators and expression of IFNB,inducible NO synthase (iNOS),and TRAIL upon TLR activation in MSC and macrophages,but failed to induce IL-12 and TNF-alpha production in MSC. Nonetheless,TLR activation in MSC resulted in the formation of an inflammatory site attracting innate immune cells,as evaluated by human neutrophil chemotaxis assays and by the analysis of immune effectors retrieved from Matrigel-embedded MSC injected into mice after in vitro preactivation with cytokines and/or TLR ligands. Hence,TLR-activated MSC are capable of recruiting immune inflammatory cells. In addition,IFN priming combined with TLR activation may increase immune responses induced by Ag-presenting MSC through presentation of Ag in an inflammatory context,a mechanism that could be applied in a cell-based vaccine.
View Publication
文献
Diehn M et al. (APR 2009)
Nature 458 7239 780--3
Association of reactive oxygen species levels and radioresistance in cancer stem cells.
The metabolism of oxygen,although central to life,produces reactive oxygen species (ROS) that have been implicated in processes as diverse as cancer,cardiovascular disease and ageing. It has recently been shown that central nervous system stem cells and haematopoietic stem cells and early progenitors contain lower levels of ROS than their more mature progeny,and that these differences are critical for maintaining stem cell function. We proposed that epithelial tissue stem cells and their cancer stem cell (CSC) counterparts may also share this property. Here we show that normal mammary epithelial stem cells contain lower concentrations of ROS than their more mature progeny cells. Notably,subsets of CSCs in some human and murine breast tumours contain lower ROS levels than corresponding non-tumorigenic cells (NTCs). Consistent with ROS being critical mediators of ionizing-radiation-induced cell killing,CSCs in these tumours develop less DNA damage and are preferentially spared after irradiation compared to NTCs. Lower ROS levels in CSCs are associated with increased expression of free radical scavenging systems. Pharmacological depletion of ROS scavengers in CSCs markedly decreases their clonogenicity and results in radiosensitization. These results indicate that,similar to normal tissue stem cells,subsets of CSCs in some tumours contain lower ROS levels and enhanced ROS defences compared to their non-tumorigenic progeny,which may contribute to tumour radioresistance.
View Publication
文献
Li Y et al. (MAR 2009)
Blood 113 10 2342--51
Mesenchymal stem/progenitor cells promote the reconstitution of exogenous hematopoietic stem cells in Fancg-/- mice in vivo.
Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow failure and complex congenital anomalies. Although mutations in FA genes result in a characteristic phenotype in the hematopoietic stem/progenitor cells (HSPCs),little is known about the consequences of a nonfunctional FA pathway in other stem/progenitor cell compartments. Given the intense functional interactions between HSPCs and the mesenchymal microenvironment,we investigated the FA pathway on the cellular functions of murine mesenchymal stem/progenitor cells (MSPCs) and their interactions with HSPCs in vitro and in vivo. Here,we show that loss of the murine homologue of FANCG (Fancg) results in a defect in MSPC proliferation and in their ability to support the adhesion and engraftment of murine syngeneic HSPCs in vitro or in vivo. Transplantation of wild-type (WT) but not Fancg(-/-) MSPCs into the tibiae of Fancg(-/-) recipient mice enhances the HSPC engraftment kinetics,the BM cellularity,and the number of progenitors per tibia of WT HSPCs injected into lethally irradiated Fancg(-/-) recipients. Collectively,these data show that FA proteins are required in the BM microenvironment to maintain normal hematopoiesis and provide genetic and quantitative evidence that adoptive transfer of WT MSPCs enhances hematopoietic stem cell engraftment.
View Publication
文献
Sarugaser R et al. ( 2009)
Methods in molecular biology (Clifton,N.J.) 482 269--79
Isolation, propagation, and characterization of human umbilical cord perivascular cells (HUCPVCs).
Current sources of mesenchymal cells,including bone marrow,fat and muscle,all require invasive procurement procedures,and provide relatively low frequencies of progenitors. Here,we describe the non-invasive isolation,and characterization,of a rich source of mesenchymal progenitor cells,which we call human umbilical cord perivascular cells (HUCPVCs). HUCPVCs show a similar immunological phenotype to bone marrow-derived mesenchymal stromal cells (BM-MSCs),since they are non-alloreactive,exhibit immunosuppression,and significantly reduce lymphocyte activation,in vitro. They present a non-hematopoietic myofibroblastic mesenchymal phenotype (CD45-,CD34-,CD105+,CD73+,CD90+,CD44+,CD106+,3G5+,CD146+); with a 1:300 frequency at harvest,a short-doubling time,and a clonogenic frequency of textgreater1:3 in culture. Furthermore,in addition to robust quinti-potential differentiation capacity in vitro,HUCPVCs have been shown to contribute to both musculo-skeletal and dermal wound healing in vivo.
View Publication
文献
Eirew P et al. (DEC 2008)
Nature medicine 14 12 1384--9
A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability.
Previous studies have demonstrated that normal mouse mammary tissue contains a rare subset of mammary stem cells. We now describe a method for detecting an analogous subpopulation in normal human mammary tissue. Dissociated cells are suspended with fibroblasts in collagen gels,which are then implanted under the kidney capsule of hormone-treated immunodeficient mice. After 2-8 weeks,the gels contain bilayered mammary epithelial structures,including luminal and myoepithelial cells,their in vitro clonogenic progenitors and cells that produce similar structures in secondary transplants. The regenerated clonogenic progenitors provide an objective indicator of input mammary stem cell activity and allow the frequency and phenotype of these human mammary stem cells to be determined by limiting-dilution analysis. This new assay procedure sets the stage for investigations of mechanisms regulating normal human mammary stem cells (and possibly stem cells in other tissues) and their relationship to human cancer stem cell populations.
View Publication
文献
Valenti MT et al. (DEC 2008)
Bone 43 6 1084--92
Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells.
MSCs are known to have an extensive proliferative potential and ability to differentiate in various cell types. Osteoblastic differentiation from mesenchymal progenitor cells is an important step of bone formation,though the pattern of gene expression during differentiation is not yet well understood. Here,to investigate the possibility to obtain a model for in vitro bone differentiation using mesenchymal stem cells (hMSCs) from human subjects non-invasively,we developed a method to obtain hMSCs-like cells from peripheral blood by a two step method that included an enrichment of mononuclear cells followed by depletion of unwanted cells. Using these cells,we analyzed the expression of transcription factor genes (runt-related transcription factor 2 (RUNX2) and osterix (SP7)) and bone related genes (osteopontin (SPP1),osteonectin (SPARC) and collagen,type I,alpha 1 (COLIA1)) during osteoblastic differentiation. Our results demonstrated that hMSCs can be obtained from peripheral blood and that they are able to generate CFU-F and to differentiate in osteoblast and adipocyte; in this study,we also identified a possible gene expression timing during osteoblastic differentiation that provided a powerful tool to study bone physiology.
View Publication
文献
Raouf A et al. (JUL 2008)
Cell stem cell 3 1 109--18
Transcriptome analysis of the normal human mammary cell commitment and differentiation process.
Mature mammary epithelial cells are generated from undifferentiated precursors through a hierarchical process,but the molecular mechanisms involved,particularly in the human mammary gland,are poorly understood. To address this issue,we isolated highly purified subpopulations of primitive bipotent and committed luminal progenitor cells as well as mature luminal and myoepithelial cells from normal human mammary tissue and compared their transcriptomes obtained using three different methods. Elements unique to each subset of mammary cells were identified,and changes that accompany their differentiation in vivo were shown to be recapitulated in vitro. These include a stage-specific change in NOTCH pathway gene expression during the commitment of bipotent progenitors to the luminal lineage. Functional studies further showed NOTCH3 signaling to be critical for this differentiation event to occur in vitro. Taken together,these findings provide an initial foundation for future delineation of mechanisms that perturb primitive human mammary cell growth and differentiation.
View Publication