Daneshvar K et al. (OCT 2016)
Cell reports 17 2 353--365
DIGIT Is a Conserved Long Noncoding RNA that Regulates GSC Expression to Control Definitive Endoderm Differentiation of Embryonic Stem Cells.
Long noncoding RNAs (lncRNAs) exhibit diverse functions,including regulation of development. Here,we combine genome-wide mapping of SMAD3 occupancy with expression analysis to identify lncRNAs induced by activin signaling during endoderm differentiation of human embryonic stem cells (hESCs). We find that DIGIT is divergent to Goosecoid (GSC) and expressed during endoderm differentiation. Deletion of the SMAD3-occupied enhancer proximal to DIGIT inhibits DIGIT and GSC expression and definitive endoderm differentiation. Disruption of the gene encoding DIGIT and depletion of the DIGIT transcript reveal that DIGIT is required for definitive endoderm differentiation. In addition,we identify the mouse ortholog of DIGIT and show that it is expressed during development and promotes definitive endoderm differentiation of mouse ESCs. DIGIT regulates GSC in trans,and activation of endogenous GSC expression is sufficient to rescue definitive endoderm differentiation in DIGIT-deficient hESCs. Our study defines DIGIT as a conserved noncoding developmental regulator of definitive endoderm.
View Publication
文献
Yuan Y et al. (OCT 2016)
Scientific reports 6 34476
Efficient long-term cryopreservation of pluripotent stem cells at -80 °C.
Current long term cryopreservation of cell stocks routinely requires the use of liquid nitrogen (LN2),because commonly used cryopreservation media containing cell membrane permeating cryoprotectants are thermally unstable when frozen at higher storage temperatures,e.g. -80 °C. This instability leads to ice recrystallization,causing progressive loss of cell viability over time under the storage conditions provided by most laboratory deep freezers. The dependency on LN2 for cell storage significantly increases operational expense and raises issues related to impaired working efficiency and safety. Here we demonstrate that addition of Ficoll 70 to cryoprotectant solutions significantly improves system thermal stability at the working temperature (˜-80 °C) of laboratory deep freezers. Moreover,a medium comprised of Ficoll 70 and dimethyl sulfoxide (DMSO) in presence or absence of fetal bovine serum (FBS) can provide reliable cryopreservation of various kinds of human and porcine pluripotent stem cells at -80 °C for periods that extend up to at least one year,with the post-thaw viability,plating efficiency,and full retention of pluripotent phenotype comparable to that achieved with LN2 storage. These results illustrate the practicability of a promising long-term cryopreservation method that completely eliminates the need for LN2.
View Publication
文献
Zhang X et al. (JAN 2017)
Cellular signalling 29 12--22
Wnt signaling promotes hindgut fate commitment through regulating multi-lineage genes during hESC differentiation.
Wnt signaling plays essential roles in both embryonic pattern formation and postembryonic tissue homoestasis. High levels of Wnt activity repress foregut identity and facilitate hindgut fate through forming a gradient of Wnt signaling activity along the anterior-posterior axis. Here,we examined the mechanisms of Wnt signaling in hindgut development by differentiating human embryonic stem cells (hESCs) into the hindgut progenitors. We observed severe morphological changes when Wnt signaling was blocked by using Wnt antagonist Dkk1. We performed deep-transcriptome sequencing (RNA-seq) and identified 240 Wnt-activated genes and 2023 Wnt-repressed genes,respectively. Clusters of Wnt targets showed enrichment in specific biological functions,such as gastrointestinal or skeletal development" in the Wnt-activated targets and "neural or immune system development" in the Wnt-repressed targets. Moreover�
View Publication
文献
Dye BR et al. (SEP 2016)
eLife 5
A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids.
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro,and become more adult-like in their structure,cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al.,2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment,long-term survival,and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue,we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue,resulting in airway-like structures that were remarkably similar to the native adult human lung.
View Publication
文献
Keung W et al. (SEP 2016)
Scientific reports 6 34154
Non-cell autonomous cues for enhanced functionality of human embryonic stem cell-derived cardiomyocytes via maturation of sarcolemmal and mitochondrial KATP channels.
Human embryonic stem cells (hESCs) is a potential unlimited ex vivo source of ventricular (V) cardiomyocytes (CMs),but hESC-VCMs and their engineered tissues display immature traits. In adult VCMs,sarcolemmal (sarc) and mitochondrial (mito) ATP-sensitive potassium (KATP) channels play crucial roles in excitability and cardioprotection. In this study,we aim to investigate the biological roles and use of sarcKATP and mitoKATP in hESC-VCM. We showed that SarcIK,ATP in single hESC-VCMs was dormant under baseline conditions,but became markedly activated by cyanide (CN) or the known opener P1075 with a current density that was ˜8-fold smaller than adult; These effects were reversible upon washout or the addition of GLI or HMR1098. Interestingly,sarcIK,ATP displayed a ˜3-fold increase after treatment with hypoxia (5% O2). MitoIK,ATP was absent in hESC-VCMs. However,the thyroid hormone T3 up-regulated mitoIK,ATP,conferring diazoxide protective effect on T3-treated hESC-VCMs. When assessed using a multi-cellular engineered 3D ventricular cardiac micro-tissue (hvCMT) system,T3 substantially enhanced the developed tension by 3-folds. Diazoxide also attenuated the decrease in contractility induced by simulated ischemia (1% O2). We conclude that hypoxia and T3 enhance the functionality of hESC-VCMs and their engineered tissues by selectively acting on sarc and mitoIK,ATP.
View Publication
文献
Mora-Bermú et al. (SEP 2016)
eLife 5
Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development.
Human neocortex expansion likely contributed to the remarkable cognitive abilities of humans. This expansion is thought to primarily reflect differences in proliferation versus differentiation of neural progenitors during cortical development. Here,we have searched for such differences by analysing cerebral organoids from human and chimpanzees using immunohistochemistry,live imaging,and single-cell transcriptomics. We find that the cytoarchitecture,cell type composition,and neurogenic gene expression programs of humans and chimpanzees are remarkably similar. Notably,however,live imaging of apical progenitor mitosis uncovered a lengthening of prometaphase-metaphase in humans compared to chimpanzees that is specific to proliferating progenitors and not observed in non-neural cells. Consistent with this,the small set of genes more highly expressed in human apical progenitors points to increased proliferative capacity,and the proportion of neurogenic basal progenitors is lower in humans. These subtle differences in cortical progenitors between humans and chimpanzees may have consequences for human neocortex evolution.
View Publication
文献
Schenk FW et al. (SEP 2016)
Scientific reports 6 34038
High-speed microscopy of continuously moving cell culture vessels.
We report a method of high-speed phase contrast and bright field microscopy which permits large cell culture vessels to be scanned at much higher speed (up to 30 times faster) than when conventional methods are used without compromising image quality. The object under investigation moves continuously and is captured using a flash illumination which creates an exposure time short enough to prevent motion blur. During the scan the object always stays in focus due to a novel hardware-autofocus system.
View Publication
文献
Carter DA et al. (SEP 2016)
Scientific reports 6 33792
Mislocalisation of BEST1 in iPSC-derived retinal pigment epithelial cells from a family with autosomal dominant vitreoretinochoroidopathy (ADVIRC).
Autosomal dominant vitreoretinochoroidopathy (ADVIRC) is a rare,early-onset retinal dystrophy characterised by distinct bands of circumferential pigmentary degeneration in the peripheral retina and developmental eye defects. ADVIRC is caused by mutations in the Bestrophin1 (BEST1) gene,which encodes a transmembrane protein thought to function as an ion channel in the basolateral membrane of retinal pigment epithelial (RPE) cells. Previous studies suggest that the distinct ADVIRC phenotype results from alternative splicing of BEST1 pre-mRNA. Here,we have used induced pluripotent stem cell (iPSC) technology to investigate the effects of an ADVIRC associated BEST1 mutation (c.704T textgreater C,p.V235A) in patient-derived iPSC-RPE. We found no evidence of alternate splicing of the BEST1 transcript in ADVIRC iPSC-RPE,however in patient-derived iPSC-RPE,BEST1 was expressed at the basolateral membrane and the apical membrane. During human eye development we show that BEST1 is expressed more abundantly in peripheral RPE compared to central RPE and is also expressed in cells of the developing retina. These results suggest that higher levels of mislocalised BEST1 expression in the periphery,from an early developmental stage,could provide a mechanism that leads to the distinct clinical phenotype observed in ADVIRC patients.
View Publication
文献
Zhang J et al. (SEP 2016)
Stem cell research & therapy 7 1 136
Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway.
BACKGROUND Recently,accumulating evidence has shown that exosomes,the naturally secreted nanocarriers of cells,can exert therapeutic effects in various disease models in the absence of parent cells. However,application of exosomes in bone defect repair and regeneration has been rarely reported,and little is known regarding their underlying mechanisms. METHODS Exosomes derived from human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPS-MSC-Exos) were combined with tricalcium phosphate (β-TCP) to repair critical-sized calvarial bone defects,and the efficacy was assessed by histological examination. We evaluated the in vitro effects of hiPSC-MSC-Exos on the proliferation,migration,and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) by cell-counting,scratch assays,and qRT-PCR,respectively. Gene expression profiling and bioinformatics analyses were also used to identify the underlying mechanisms in the repair. RESULTS We found that the exosome/β-TCP combination scaffolds could enhance osteogenesis as compared to pure β-TCP scaffolds. In vitro assays showed that the exosomes could release from β-TCP and could be internalized by hBMSCs. In addition,the internalization of exosomes into hBMSCs could profoundly enhance the proliferation,migration,and osteogenic differentiation of hBMSCs. Furthermore,gene expression profiling and bioinformatics analyses demonstrated that exosome/β-TCP combination scaffolds significantly altered the expression of a network of genes involved in the PI3K/Akt signaling pathway. Functional studies further confirmed that the PI3K/Akt signaling pathway was the critical mediator during the exosome-induced osteogenic responses of hBMSCs. CONCLUSIONS We propose that the exosomes can enhance the osteoinductivity of β-TCP through activating the PI3K/Akt signaling pathway of hBMSCs,which means that the exosome/β-TCP combination scaffolds possess better osteogenesis activity than pure β-TCP scaffolds. These results indicate that naturally secreted nanocarriers-exosomes can be used as a bioactive material to improve the bioactivity of the biomaterials,and that hiPS-MSC-Exos combined with β-TCP scaffolds can be potentially used for repairing bone defects.
View Publication
文献
Mazzotta S et al. (OCT 2016)
Stem cell reports 7 4 764--776
Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development.
Wnt signaling is a key regulator of vertebrate heart development; however,specific roles for human cardiomyocyte development remain uncertain. Here we use human embryonic stem cells (hESCs) to analyze systematically in human cardiomyocyte development the expression of endogenous Wnt signaling components,monitor pathway activity,and dissect stage-specific requirements for canonical and noncanonical Wnt signaling mechanisms using small-molecule inhibitors. Our analysis suggests that WNT3 and WNT8A,via FZD7 and canonical signaling,regulate BRACHYURY expression and mesoderm induction; that WNT5A/5B,via ROR2 and noncanonical signaling,regulate MESP1 expression and cardiovascular development; and that later in development WNT2,WNT5A/5B,and WNT11,via FZD4 and FZD6,regulate functional cardiomyocyte differentiation via noncanonical Wnt signaling. Our findings confirm in human development previously proposed roles for canonical Wnt signaling in sequential stages of vertebrate cardiomyogenesis,and identify more precise roles for noncanonical signaling and for individual Wnt signal and Wnt receptor genes in human cardiomyocyte development.
View Publication
文献
Nath SC et al. (SEP 2016)
Bioprocess and biosystems engineering
Culture medium refinement by dialysis for the expansion of human induced pluripotent stem cells in suspension culture.
Human induced pluripotent stem cells (hiPSCs) secrete essential autocrine factors that are removed along with toxic metabolites when the growth medium is exchanged daily. In this study,after determining the minimum inhibitory level of lactic acid for hiPSCs,a medium refining system was constructed by which toxic metabolites were removed from used culture medium and autocrine factors as well as other growth factors were recycled. Specifically,about 87 % of the basic fibroblast growth factor and 80 % of transforming growth factor beta 1 were retained in the refined medium after dialysis. The refined medium efficiently potentiated the proliferation of hiPS cells in adherent culture. When the refining system was used to refresh medium in suspension culture,a final cell density of (1.1 ± 0.1) × 10(6) cells mL(-1) was obtained,with 99.5 ± 0.2 % OCT 3/4 and 78.3 ± 1.1 % TRA-1-60 expression,on day 4 of culture. These levels of expression were similar to those observed in the conventional suspension culture. With this method,culture medium refinement by dialysis was established to remove toxic metabolites,recycle autocrine factors as well as other growth factors,and reduce the use of macromolecules for the expansion of hiPSCs in suspension culture.
View Publication
文献
Wang XQ et al. (SEP 2016)
Cell death and differentiation
CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency.
The mechanisms of how signaling pathways are coordinated and integrated for the maintenance of the self-renewal of human embryonic stem cells (hESCs) and the acquisition of pluripotency in reprogramming are still only partly understood. CDK1 is a key regulator of mitosis. Recently,CDK1 has been shown to be involved in regulating self-renewal of stem cells,even though the mechanistic role of how CDK1 regulates pluripotency is unknown. In this report,we aim to understand how CDK1 can control pluripotency by reducing CDK1 activity to a level that has no effect on cell cycle progression. We demonstrated that high levels of CDK1 is associated with the pluripotency stage of hESCs; and decreased CDK1 activity to a level without perturbing the cell cycle is sufficient to induce differentiation. CDK1 specifically targets the phosphorylation of PDK1 and consequently the activity of PI3K/Akt and its effectors ERK and GSK3β. Evidence of the reversion of inactive CDK1-mediated differentiation by the inhibition of Akt signaling effectors suggests that the CDK1-PDK1-PI3K/Akt kinase cascade is a functional signaling pathway for the pluripotency of hESCs. Moreover,cyclin B1-CDK1 complexes promote somatic reprogramming efficiency,probably by regulating the maturation of induced pluripotent stem cells (iPSCs),as cyclin B1 stimulates a higher cellular level of LIN28A,suggesting that monitoring iPSC factors could be a new path for the enhancement of reprogramming efficiency. Together,we demonstrate an essential role for the CDK1-PDK1-PI3K/Akt kinase signaling pathway in the regulation of self-renewal,differentiation,and somatic reprogramming,which provides a novel kinase cascade mechanism for pluripotency control and acquisition.Cell Death and Differentiation advance online publication,16 September 2016; doi:10.1038/cdd.2016.84.
View Publication