Kolhar P et al. (APR 2010)
Journal of biotechnology 146 3 143--6
Synthetic surfaces for human embryonic stem cell culture.
Human embryonic stem cells (hESCs) have numerous potential biomedical applications owing to their unique abilities for self-renewal and pluripotency. Successful clinical application of hESCs and derivatives necessitates the culture of these cells in a fully defined environment. We have developed a novel peptide-based surface that uses a high-affinity cyclic RGD peptide for culture of hESCs under chemically defined conditions.
View Publication
文献
Stelling MP et al. (MAR 2013)
Glycobiology 23 3 337--345
Matrix-bound heparan sulfate is essential for the growth and pluripotency of human embryonic stem cells
Human embryonic stem (hES) cell production of heparan sulfate influences cell fate and pluripotency. Human ES cells remain pluripotent in vitro through the action of growth factors signaling,and the activity of these factors depends on interaction with specific receptors and also with heparan sulfate. Here,we tested the hypothesis that matrix-associated heparan sulfate is enough to maintain hES cells under low fibroblast growth factor-2 concentration in the absence of live feeder cells. To pursue this goal,we compared hES cells cultured either on coated plates containing live murine embryonic fibroblasts (MEFs) or on a matrix derived from ethanol-fixed MEFs. hES cells were analyzed for the expression of pluripotency markers and the ability to form embryoid bodies. hES cells cultured either on live mouse fibroblasts or onto a matrix derived from fixed fibroblasts expressed similar levels of Oct-4,SOX-2,Nanog,TRA-1-60 and SSEA-4,and they were also able to form cavitated embryoid bodies. Heparan sulfate-depleted matrix lost the ability to support the adherence and growth of hES cells,confirming that this glycosaminoglycan,bound to the extracellular matrix,is enough for the growth and attachment of hES cells. Finally,we observed that the ethanol-fixed matrix decreases by 30% the levels of Neu5Gc in hES cells,indicating that this procedure reduces xeno-contamination. Our data suggest that matrix-bound heparan sulfate is required for the growth and pluripotency of hES cells and that ethanol-fixed MEFs may be used as a live cell"-free substrate for stem cells."
View Publication
文献
Sokolov MV et al. (MAY 2010)
Gene 455 1-2 8--15
Expression of pluripotency-associated genes in the surviving fraction of cultured human embryonic stem cells is not significantly affected by ionizing radiation.
Human embryonic stem cells (hESC) are capable to give rise to all cell types in the human body during the normal course of development. Therefore,these cells hold a great promise in regenerative cell replacement based therapeutical approaches. However,some controversy exists in literature concerning the ultimate fate of hESC after exposure to genotoxic agents,in particular,regarding the effect of DNA damaging insults on pluripotency of hESC. To comprehensively address this issue,we performed an analysis of the expression of marker genes,associated with pluripotent state of hESC,such as Oct-4,Nanog,Sox-2,SSEA-4,TERT,TRA-1-60 and TRA-1-81 up to 65h after exposure to ionizing radiation (IR) using flow cytometry,immunocytochemistry and quantitative real-time polymerase chain reaction techniques. We show that irradiation with relatively low doses of gamma-radiation (0.2Gy and 1Gy) does not lead to loss of expression of the pluripotency-associated markers in the surviving hESC. While changes in the levels of expression of some of the pluripotency markers were observed at different time points after IR exposure,these alterations were not persistent,and,in most cases,the expression of the pluripotency-associated markers remained significantly higher than that observed in fully differentiated human fibroblasts,and in hESCs differentiated into definitive endodermal lineage. Our data suggest that exposure of hESC to relatively low doses of IR as a model genotoxic agent does not significantly affect pluripotency of the surviving fraction of hESC.
View Publication
文献
Xu X et al. ( 2010)
Biotechnology Progress 26 3 827--837
The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells
Human embryonic stem (hES) cells have enormous potential for clinical applications. However,one major challenge is to achieve high cell recovery rate after cryopreservation. Understanding how the conventional cryopreservation protocol fails to protect the cells is a prerequisite for developing efficient and successful cryopreservation methods for hES cell lines and banks. We investigated how the stimuli from cryopreservation result in apoptosis,which causes the low cell recovery rate after cryopreservation. The level of reactive oxygen species (ROS) is significantly increased,F-actin content and distribution is altered,and caspase-8 and caspase-9 are activated after cryopreservation. p53 is also activated and translocated into nucleus. During cryopreservation apoptosis is induced by activation of both caspase-8 through the extrinsic pathway and caspase-9 through the intrinsic pathway. However,exactly how the extrinsic pathway is activated is still unclear and deserves further investigation.
View Publication
文献
Derda R et al. (FEB 2010)
Journal of the American Chemical Society 132 4 1289--1295
High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells.
Synthetic materials that promote the growth or differentiation of cells have advanced the fields of tissue engineering and regenerative medicine. Most functional biomaterials are based on a handful of peptide sequences derived from protein ligands for cell surface receptors. Because few proteins possess short peptide sequences that alone can engage cell surface receptors,the repertoire of receptors that can be targeted with this approach is limited. Materials that bind diverse classes of receptors,however,may be needed to guide cell growth and differentiation. To provide access to such new materials,we utilized phage display to identify novel peptides that bind to the surface of pluripotent cells. Using human embryonal carcinoma (EC) cells as bait,approximately 3 x 10(4) potential cell-binding phage clones were isolated. The pool was narrowed using an enzyme-linked immunoassay: 370 clones were tested,and seven cell-binding peptides were identified. Of these,six sequences possess EC cell-binding ability. Specifically,when displayed by self-assembled monolayers (SAMs) of alkanethiols on gold,they mediate cell adhesion. The corresponding soluble peptides block this adhesion,indicating that the identified peptide sequences are specific. They also are functional. Synthetic surfaces displaying phage-derived peptides support growth of undifferentiated human embryonic stem (ES) cells. When these cells were cultured on SAMs presenting the sequence TVKHRPDALHPQ or LTTAPKLPKVTR in a chemically defined medium (mTeSR),they expressed markers of pluripotency at levels similar to those of cells cultured on Matrigel. Our results indicate that this screening strategy is a productive avenue for the generation of materials that control the growth and differentiation of cells.
View Publication
文献
Moore JC et al. (MAR 2010)
Stem Cell Research 4 2 92--106
A high-resolution molecular-based panel of assays for identification and characterization of human embryonic stem cell lines
Meticulous characterization of human embryonic stem cells (hESC) is critical to their eventual use in cell-based therapies,particularly in view of the diverse methods for derivation and maintenance of these cell lines. However,characterization methods are generally not standardized and many currently used assays are subjective,making dependable and direct comparison of cell lines difficult. In order to address this problem,we selected 10 molecular-based high-resolution assays as components of a panel for characterization of hESC. The selection of the assays was primarily based on their quantitative or objective (rather than subjective) nature. We demonstrate the efficacy of this panel by characterizing 4 hESC lines,derived in two different laboratories using different derivation techniques,as pathogen free,genetically stable,and able to differentiate into derivatives of all three germ layers. Our panel expands and refines a characterization panel previously proposed by the International Stem Cell Initiative and is another step toward standardized hESC characterization and quality control,a crucial element of successful hESC research and clinical translation.
View Publication
文献
Fernandes AM et al. (JAN 2010)
Cell Transplantation 19 5 509--23
Worldwide survey of published procedures to culture human embryonic stem cells
Since their derivation 11 years ago,human embryonic stem (hES) cells have become a powerful tool in both basic biomedical research and developmental biology. Their capacity for self-renewal and differentiation into any tissue type has also brought interest from fields such as cell therapy and drug screening. We conducted an extensive analysis of 750 papers (51% of the total published about hES cells between 1998 and 2008) to present a spectrum of hES cell research including culture protocols developed worldwide. This review may stimulate discussions about the importance of having unvarying methods to culture hES cells,in order to facilitate comparisons among data obtained by research groups elsewhere,especially concerning preclinical studies. Moreover,the description of the most widely used cell lines,reagents,and procedures adopted internationally will help newcomers on deciding the best strategies for starting their own studies. Finally,the results will contribute with the efforts of stem cell researchers on comparing the performance of different aspects related to hES cell culture methods.
View Publication
文献
Li Z et al. (JAN 2009)
PLoS ONE 4 12 e8443
Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction
BACKGROUND: Differentiation of human embryonic stem cells into endothelial cells (hESC-ECs) has the potential to provide an unlimited source of cells for novel transplantation therapies of ischemic diseases by supporting angiogenesis and vasculogenesis. However,the endothelial differentiation efficiency of the conventional embryoid body (EB) method is low while the 2-dimensional method of co-culturing with mouse embryonic fibroblasts (MEFs) require animal product,both of which can limit the future clinical application of hESC-ECs. Moreover,to fully understand the beneficial effects of stem cell therapy,investigators must be able to track the functional biology and physiology of transplanted cells in living subjects over time. METHODOLOGY: In this study,we developed an extracellular matrix (ECM) culture system for increasing endothelial differentiation and free from contaminating animal cells. We investigated the transcriptional changes that occur during endothelial differentiation of hESCs using whole genome microarray,and compared to human umbilical vein endothelial cells (HUVECs). We also showed functional vascular formation by hESC-ECs in a mouse dorsal window model. Moreover,our study is the first so far to transplant hESC-ECs in a myocardial infarction model and monitor cell fate using molecular imaging methods. CONCLUSION: Taken together,we report a more efficient method for derivation of hESC-ECs that express appropriate patterns of endothelial genes,form functional vessels in vivo,and improve cardiac function. These studies suggest that hESC-ECs may provide a novel therapy for ischemic heart disease in the future.
View Publication
文献
Esteban MA et al. (JAN 2010)
Cell stem cell 6 1 71--9
Vitamin C enhances the generation of mouse and human induced pluripotent stem cells.
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. However,the low efficiency and slow kinetics of the reprogramming process have hampered progress with this technology. Here we report that a natural compound,vitamin C (Vc),enhances iPSC generation from both mouse and human somatic cells. Vc acts at least in part by alleviating cell senescence,a recently identified roadblock for reprogramming. In addition,Vc accelerates gene expression changes and promotes the transition of pre-iPSC colonies to a fully reprogrammed state. Our results therefore highlight a straightforward method for improving the speed and efficiency of iPSC generation and provide additional insights into the mechanistic basis of the reprogramming process.
View Publication
文献
Miyoshi N et al. (JAN 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 1 40--5
Defined factors induce reprogramming of gastrointestinal cancer cells.
Although cancer is a disease with genetic and epigenetic origins,the possible effects of reprogramming by defined factors remain to be fully understood. We studied the effects of the induction or inhibition of cancer-related genes and immature status-related genes whose alterations have been reported in gastrointestinal cancer cells. Retroviral-mediated introduction of induced pluripotent stem (iPS) cell genes was necessary for inducing the expression of immature status-related proteins,including Nanog,Ssea4,Tra-1-60,and Tra-1-80 in esophageal,stomach,colorectal,liver,pancreatic,and cholangiocellular cancer cells. Induced cells,but not parental cells,possessed the potential to express morphological patterns of ectoderm,mesoderm,and endoderm,which was supported by epigenetic studies,indicating methylation of DNA strands and the histone H3 protein at lysine 4 in promoter regions of pluripotency-associated genes such as NANOG. In in vitro analysis induced cells showed slow proliferation and were sensitized to differentiation-inducing treatment,and in vivo tumorigenesis was reduced in NOD/SCID mice. This study demonstrated that pluripotency was manifested in induced cells,and that the induced pluripotent cancer (iPC) cells were distinct from natural cancer cells with regard to their sensitivity to differentiation-inducing treatment. Retroviral-mediated introduction of iPC cells confers higher sensitivity to chemotherapeutic agents and differentiation-inducing treatment.
View Publication
文献
Xu X et al. ( 2010)
Biotechnology progress 26 3 781--8
Enhancement of cell recovery for dissociated human embryonic stem cells after cryopreservation.
Due to widespread applications of human embryonic stem (hES) cells,it is essential to establish effective protocols for cryopreservation and subsequent culture of hES cells to improve cell recovery. We have developed a new protocol for cryopreservation of dissociated hES cells and subsequent culture. We examined the effects of new formula of freezing solution containing 7.5% dimethylsulfoxide (DMSO) (v/v %) and 2.5% polyethylene glycol (PEG) (w/v %) on cell survival and recovery of hES cells after cryopreservation,and further investigated the role of the combination of Rho-associated kinase (ROCK) inhibitor and p53 inhibitor on cell recovery during the subsequent culture. Compared with the conventional slow-freezing method which uses 10% DMSO as a freezing solution and then cultured in the presence of ROCK inhibitor at the first day of culture,we found out that hES cell recovery was significantly enhanced by around 30 % (P textless 0.05) by the new freezing solution. Moreover,at the first day of post-thaw culture,the presence of 10 microM ROCK inhibitor (Y-27632) and 1 microM pifithrin-mu together further significantly improved cell recovery by around 20% (P textless 0.05) either for feeder-dependent or feeder-independent culture. hES cells remained their undifferentiated status after using this novel protocol for cryopreservation and subsequent culture. Furthermore,this protocol is a scalable cryopreservation method for handling large quantities of hES cells.
View Publication
文献
Martins-Taylor K and Xu R-H (JAN 2010)
Journal of cellular biochemistry 109 1 16--25
Determinants of pluripotency: from avian, rodents, to primates.
Since mouse embryonic stem (ES) cells was first derived in 1981,the ability of this unprecedented cell type to self-renew and differentiate without limit has revolutionized the discovery tools that are used to study gene functions and development. Furthermore,they have inspired others to hunt for similar cells from other species. The derivation of human ES cells in 1998 has accelerated these discoveries and has also widely provoked public interest,due to both the scientific significance of these cells for human tissue regeneration and the ethical disputes over the use of donated early human embryos. However,this is no longer a barrier,with the recent discovery of methods that can convert differentiated somatic cells into ES-like cells or induced pluripotent stem (iPS) cells,by using defined reprogramming factors. This review attempts to summarize the progresses in the derivation of ES cells (as well as other embryo-derived pluripotent cells) and iPS cells from various species. We will focus on the molecular and biological features of the cells,as well as the different determinants identified thus far to sustain their pluripotency.
View Publication