Miyazaki S et al. (DEC 2015)
Annals of surgical oncology 22 Suppl 3 S3 S1394----401
A Cancer Reprogramming Method Using MicroRNAs as a Novel Therapeutic Approach against Colon Cancer: Research for Reprogramming of Cancer Cells by MicroRNAs.
BACKGROUND We previously generated induced pluripotent stem cells by reprograming adipose stem cells through the introduction of microRNAs targeting four transcription factors (Oct3/4,Sox2,c-Myc,and Klf4). In this study,we aimed to reprogram cancer cells using microRNAs to explore their therapeutic potential. METHODS Mature microRNAs (mir-302a-d,369-3p and 5p,and mir-200c,as needed) were introduced into colon cancer cells (DLD-1,RKO,and HCT116) using lipofection. RESULTS The transfected cells exhibited an embryonic stem cell-like morphology and expressed the undifferentiated marker genes Nanog,Oct3/4,SOX2,and Klf4,as well as tumor-related antigen-1-60. These cells expressed neurogenic or adipogenic markers,indicating that reprogramming of the cancer cells was partially successful. Moreover,we found that miRNA-expressing DLD-1 cells showed low proliferative activity in vitro and in vivo,accompanied by increased expression of the tumor suppressor genes p16 (ink4a) and p21 (waf1) . miRNA-expressing DLD-1 cells also exhibited enhanced sensitivity to 5-fluorouracil,possibly through the downregulation of multidrug-resistant protein 8. The reprogrammed cells from DLD-1,RKO,and HCT116 cells exhibited reduced c-Myc expression,in contrast to the high c-Myc expression in the induced pluripotent cancer cells that were generated using four transcription factors. CONCLUSIONS Our cancer reprogramming method employing simple lipofection of mature microRNAs is safe and well suited for clinical application,because it avoids integration of exogenous genes into the host genome and allows escape from augmentation of c-Myc gene expression.
View Publication
Ortiz-Sá et al. (JAN 2009)
Leukemia 23 1 59--70
Enhanced cytotoxicity of an anti-transferrin receptor IgG3-avidin fusion protein in combination with gambogic acid against human malignant hematopoietic cells: functional relevance of iron, the receptor, and reactive oxygen species.
The human transferrin receptor (hTfR) is a target for cancer immunotherapy due to its overexpression on the surface of cancer cells. We previously developed an antibody-avidin fusion protein that targets hTfR (anti-hTfR IgG3-Av) and exhibits intrinsic cytotoxicity against certain malignant cells. Gambogic acid (GA),a drug that also binds hTfR,induces cytotoxicity in several malignant cell lines. We now report that anti-hTfR IgG3-Av and GA induce cytotoxicity in a new broader panel of hematopoietic malignant cell lines. Our results show that the effect of anti-hTfR IgG3-Av is iron-dependent whereas that of GA is iron-independent in all cells tested. In addition,we observed that GA exerts a TfR-independent cytotoxicity. We also found that GA increases the generation of reactive oxygen species that may play a role in the cytotoxicity induced by this drug. Additive cytotoxicity was observed by simultaneous combination treatment with these drugs and synergy by using anti-hTfR IgG3-Av as a chemosensitizing agent. In addition,we found a concentration of GA that is toxic to malignant hematopoietic cells but not to human hematopoietic progenitor cells. Our results suggest that these two compounds may be effective,alone or in combination,for the treatment of human hematopoietic malignancies.
View Publication
Fraga AM et al. (MAR 2011)
Cell Transplantation 20 3 431--40
Establishment of a Brazilian line of human embryonic stem cells in defined medium: implications for cell therapy in an ethnically diverse population.
Pluripotent human embryonic stem (hES) cells are an important experimental tool for basic and applied research,and a potential source of different tissues for transplantation. However,one important challenge for the clinical use of these cells is the issue of immunocompatibility,which may be dealt with by the establishment of hES cell banks to attend different populations. Here we describe the derivation and characterization of a line of hES cells from the Brazilian population,named BR-1,in commercial defined medium. In contrast to the other hES cell lines established in defined medium,BR-1 maintained a stable normal karyotype as determined by genomic array analysis after 6 months in continuous culture (passage 29). To our knowledge,this is the first reported line of hES cells derived in South America. We have determined its genomic ancestry and compared the HLA-profile of BR-1 and another 22 hES cell lines established elsewhere with those of the Brazilian population,finding they would match only 0.011% of those individuals. Our results highlight the challenges involved in hES cell banking for populations with a high degree of ethnic admixture.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
T. Namekawa et al. (jan 2019)
Cells 8 1
Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells.
Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions,as exemplified by DU-145,PC-3,and LNCaP cells,are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments,however,have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions,in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice,co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity,cellular heterogeneity,and histology of original patient tumors. In contrast to PDX models,patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article,we review PCa preclinical model cell lines and their sublines,PDXs,and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine.
View Publication
产品类型:
产品号#:
15122
15162
产品名:
RosetteSep™ 人CD45去除抗体混合物
RosetteSep™人CD45去除抗体混合物
T. S. Gabay et al. (Apr 2025)
International Journal of Molecular Sciences 26 9
GMP-like and MLP-like Subpopulations of Hematopoietic Stem and Progenitor Cells Harboring Mutated EZH2 and TP53 at Diagnosis Promote Acute Myeloid Leukemia Relapse: Data of Combined Molecular, Functional, and Genomic Single-Stem-Cell Analyses
Acute myeloid leukemia (AML) is associated with unfavorable patient outcomes primarily related to disease relapse. Since specific types of leukemic hematopoietic stem and progenitor cells (HSPCs) are suggested to contribute to AML propagation,this study aimed to identify and explore relapse-initiating HSPC subpopulations present at diagnosis,using single-cell analysis (SCA). We developed unique high-resolution techniques capable of tracking single-HSPC-derived subclones during AML evolution. Each subclone was evaluated for chemo-resistance,in vivo leukemogenic potential,mutational profile,and the cell of origin. In BM samples of 15 AML patients,GMP-like and MLP-like HSPC subpopulations were identified as prevalent at relapse,exhibiting chemo-resistance to commonly used chemotherapy agents cytosine arabinoside (Ara-C) and daunorubicin. Reconstruction of phylogenetic lineage trees combined with genetic analysis of single HSPCs and single-HSPC-derived subclones demonstrated two distinct clusters,originating from MLP-like or GMP-like subpopulations,observed both at diagnosis and relapse. These subpopulations induced leukemia development ex vivo and in vivo. Genetic SCA showed that these relapse-related subpopulations harbored mutated EZH2 and TP53,detected already at diagnosis. This study,using combined molecular,functional,and genomic analyses at the level of single cells,identified patient-specific chemo-resistant HSPC subpopulations at the time of diagnosis,promoting AML relapse.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
Krummen M et al. (JUL 2010)
Journal of leukocyte biology 88 1 189--99
Release of IL-12 by dendritic cells activated by TLR ligation is dependent on MyD88 signaling, whereas TRIF signaling is indispensable for TLR synergy.
Recently,it has been shown that certain combinations of TLR ligands act in synergy to induce the release of IL-12 by DCs. In this study,we sought to define the critical parameters underlying TLR synergy. Our data show that TLR ligands act synergistically if MyD88- and TRIF-dependent ligands are combined. TLR4 uses both of these adaptor molecules,thus activation via TLR4 proved to be a synergistic event on its own. TLR synergy did not affect all aspects of DC activation but enhanced primarily the release of certain cytokines,particularly IL-12,whereas the expression of costimulatory molecules remained unchanged. Consequently,synergistic activation of DC did not affect their ability to induce T cell proliferation but resulted in T(H)1-biased responses in vitro and in vivo. Furthermore,we examined the impact of TLR ligand combinations on primary DC in vitro but observed only modest effects with a combination of CpG + Poly (I:C). However,noticeable synergy in terms of IL-12 production by DCs was detectable in vivo after systemic administration of CpG + Poly (I:C). Finally,we show that synergy is partially dependent on IFNAR signaling but does not require the release of IFNs to the enviroment,suggesting an autocrine action of type I IFNs.
View Publication
产品类型:
产品号#:
18752
18752RF
21000
20119
20155
18758
18758RF
18768
18768RF
产品名:
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
Liberski AR et al. (JUL 2013)
Journal of Proteome Research 12 7 3233--3245
Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture
Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics,and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is,however,traditionally limited to simple tissue culture regimens and only rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer,and as a result,possible xenogeneic contamination,contribution of unlabeled amino acids by the feeders,interlaboratory variability of MEF preparation,and the overall complexity of the culture system are all of concern in conjunction with SILAC. We demonstrate a feeder-free SILAC culture system based on a customized version of a commonly used,chemically defined hESC medium developed by Ludwig et al. and commercially available as mTeSR1 [mTeSR1 is a trade mark of WiCell (Madison,WI) licensed to STEMCELL Technologies (Vancouver,Canada)]. This medium,together with adjustments to the culturing protocol,facilitates reproducible labeling that is easily scalable to the protein amounts required by proteomic work flows. It greatly enhances the usability of quantitative proteomics as a tool for the study of mechanisms underlying hESCs differentiation and self-renewal. Associated data have been deposited to the ProteomeXchange with the identifier PXD000151.
View Publication
Nakorn TN et al. (JAN 2003)
Proceedings of the National Academy of Sciences of the United States of America 100 1 205--10
Characterization of mouse clonogenic megakaryocyte progenitors.
Although it has been shown that unfractionated bone marrow,hematopoietic stem cells,common myeloid progenitors,and bipotent megakaryocyteerythrocyte progenitors can give rise to megakaryocyte colonies in culture,monopotent megakaryocyte-committed progenitors (MKP) have never been prospectively isolated from the bone marrow of adult mice. Here,we use a monoclonal antibody to the megakaryocyte-associated surface protein,CD9,to purify MKPs from the c-kit(+)Sca-1(-)IL7Ralpha(-)Thy1.1(-)Lin(-) fraction of adult C57BLKa-Thy1.1 bone marrow. The CD9(+) fraction contained a subset of CD41(+)FcgammaR(lo)CD34(+)CD38(+) cells that represent approximately 0.01% of the total nucleated bone marrow cells. They give rise mainly to colony-forming unit-megakaryocytes and occasionally burst-forming unit-megakaryocytes,with a plating efficiency textgreater60% at the single-cell level. In vivo,MKPs do not have spleen colony-forming activity nor do they contribute to long-term multilineage hematopoiesis; they give rise only to platelets for approximately 3 weeks. Common myeloid progenitors and megakaryocyteerythrocyte progenitors can differentiate into MKPs after 72 h in stromal cultures,indicating that MKPs are downstream of these two progenitors. These isolatable MKPs will be very useful for further studies of megakaryopoiesis as well as the elucidation of their gene expression patterns.
View Publication
产品类型:
产品号#:
03231
产品名:
MethoCult™M3231
Portale AA et al. (MAY 1989)
The Journal of clinical investigation 83 5 1494--9
Physiologic regulation of the serum concentration of 1,25-dihydroxyvitamin D by phosphorus in normal men.
We asked this question: in normal humans,is either a normal dietary intake or normal serum concentration of phosphorus a determinant of the serum concentration of 1,25(OH)2D? In seven normal men whose dietary phosphorus was decreased from 2,300 to 625 mg/d,each intake for 8-9 d,under strictly controlled,normal metabolic conditions,we measured serum concentrations of 1,25(OH)2D daily,and concentrations of phosphorus hourly throughout a 24-h period,before and after restriction. Decreasing dietary phosphorus induced: (a) a 58% increase in serum levels of 1,25(OH)2D; (b) a 35% decrease in serum levels of phosphorus measured in the afternoon; (c) a 12% decrease in the 24-h mean serum level of phosphorus; but,(d) no decrease in morning fasting levels of phosphorus. Serum concentrations of 1,25(OH)2D varied inversely and significantly with 24-h mean concentrations of phosphorus (r = -0.77,P less than 0.001). When these data are combined with those of our prior study in which dietary phosphorus was varied over an extreme range,the relationship between serum levels of 1,25(OH)2D and 24-h mean serum levels of phosphorus is even stronger (r = -0.90,P less than 0.001). In the aggregate,the results demonstrate that in normal men,dietary phosphorus throughout a normal range and beyond,can finely regulate the renal production and serum concentration of 1,25(OH)2D,and provide evidence that this regulation is mediated by fine modulation of the serum concentration of phosphorus.
View Publication