Implantable tissue-engineered blood vessels from human induced pluripotent stem cells
Derivation of functional vascular smooth muscle cells (VSMCs) from human induced pluripotent stem cells (hiPSCs) to generate tissue-engineered blood vessels (TEBVs) holds great potential in treating patients with vascular diseases. Herein,hiPSCs were differentiated into alpha-smooth muscle actin ($$-SMA) and calponin-positive VSMCs,which were seeded onto polymer scaffolds in bioreactors for vascular tissue growth. A functional TEBV with abundant collagenous matrix and sound mechanics resulted,which contained cells largely positive for $$-SMA and smooth muscle myosin heavy chain (SM-MHC). Moreover,when hiPSC-derived TEBV segments were implanted into nude rats as abdominal aorta interposition grafts,they remained unruptured and patent with active vascular remodeling,and showed no evidence of teratoma formation during a 2-week proof-of-principle study. Our studies represent the development of the first implantable TEBVs based on hiPSCs,and pave the way for developing autologous or allogeneic grafts for clinical use in patients with vascular disease.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
文献
Chen X et al. (SEP 2006)
Stem cells (Dayton,Ohio) 24 9 2052--9
Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells.
Supplementation of mesenchymal stem cells (MSCs) during hematopoietic stem cell (HSC) transplantation alleviates complications such as graft-versus-host disease,leading to a speedy recovery of hematopoiesis. To meet this clinical demand,a fast MSC expansion method is required. In the present study,we examined the feasibility of using a rotary bioreactor system to expand MSCs from isolated bone marrow mononuclear cells. The cells were cultured in a rotary bioreactor with Myelocult medium containing a combination of supplementary factors,including stem cell factor and interleukin-3 and -6. After 8 days of culture,total cell numbers,Stro-1(+)CD44(+)CD34(-) MSCs,and CD34(+)CD44(+)Stro-1(-) HSCs were increased 9-,29-,and 8-fold,respectively. Colony-forming efficiency-fibroblast per day of the bioreactor-treated cells was 1.44-fold higher than that of the cells without bioreactor treatment. The bioreactor-expanded MSCs showed expression of primitive MSC markers endoglin (SH2) and vimentin,whereas markers associated with lineage differentiation,including osteocalcin (osteogenesis),type II collagen (chondrogenesis),and C/EBP-alpha (CCAAT/enhancer-binding protein-alpha) (adipogenesis),were not detected. Upon induction,the bioreactor-expanded MSCs were able to differentiate into osteoblasts,chondrocytes,and adipocytes. We conclude that the rotary bioreactor with the modified Myelocult medium reported in this study may be used to rapidly expand MSCs.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
文献
Matsuura K et al. (AUG 2012)
Biochemical and biophysical research communications 425 2 321--7
Creation of human cardiac cell sheets using pluripotent stem cells
Although we previously reported the development of cell-dense thickened cardiac tissue by repeated transplantation-based vascularization of neonatal rat cardiac cell sheets,the cell sources for human cardiac cells sheets and their functions have not been fully elucidated. In this study,we developed a bioreactor to expand and induce cardiac differentiation of human induced pluripotent stem cells (hiPSCs). Bioreactor culture for 14 days produced around 8×10(7) cells/100 ml vessel and about 80% of cells were positive for cardiac troponin T. After cardiac differentiation,cardiomyocytes were cultured on temperature-responsive culture dishes and showed spontaneous and synchronous beating,even after cell sheets were detached from culture dishes. Furthermore,extracellular action potential propagation was observed between cell sheets when two cardiac cell sheets were partially overlaid. These findings suggest that cardiac cell sheets formed by hiPSC-derived cardiomyocytes might have sufficient properties for the creation of thickened cardiac tissue.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Gafni O et al. (DEC 2013)
Nature 504 7479 282--6
Derivation of novel human ground state naive pluripotent stem cells.
Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts,and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer,retaining a pre-inactivation X chromosome state,and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF,naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells,they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression,pronounced tendency for X chromosome inactivation in most female human ES cells,increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells,from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells,and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively,our findings establish new avenues for regenerative medicine,patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.
View Publication
Ohta R et al. (NOV 2016)
Scientific reports 6 35680
Laminin-guided highly efficient endothelial commitment from human pluripotent stem cells.
Obtaining highly purified differentiated cells via directed differentiation from human pluripotent stem cells (hPSCs) is an essential step for their clinical application. Among the various conditions that should be optimized,the precise role and contribution of the extracellular matrix (ECM) during differentiation are relatively unclear. Here,using a short fragment of laminin 411 (LM411-E8),an ECM predominantly expressed in the vascular endothelial basement membrane,we demonstrate that the directed switching of defined ECMs robustly yields highly-purified (textgreater95%) endothelial progenitor cells (PSC-EPCs) without cell sorting from hPSCs in an integrin-laminin axis-dependent manner. Single-cell RNA-seq analysis revealed that LM411-E8 resolved intercellular transcriptional heterogeneity and escorted the progenitor cells to the appropriate differentiation pathway. The PSC-EPCs gave rise to functional endothelial cells both in vivo and in vitro. We therefore propose that sequential switching of defined matrices is an important concept for guiding cells towards desired fate.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Gentry T et al. (JAN 2007)
Cytotherapy 9 6 569--76
Isolation of early hematopoietic cells, including megakaryocyte progenitors, in the ALDH-bright cell population of cryopreserved, banked UC blood.
BACKGROUND: ALDH-bright (ALDH(br)) cell populations sorted from freshly collected umbilical cord blood (UCB) on the basis of their high aldehyde dehydrogenase (ALDH) activity are highly enriched for HPC. HPC with low ALDH activity (ALDH(dim)) are primarily short-term progenitors,whereas progenitors that initiate long-term cultures or establish long-term grafts in xenograft models are ALDH(br). We examined the multilineage hematopoietic and platelet progenitor activities of ALDH(br) cells recovered from cryopreserved UCB units typically employed in the practice of clinical transplantation. METHODS: Frozen UCB units were thawed,washed,immunomagnetically depleted of cells expressing glycophorin A and CD14,reacted for flow cytometric detection of ALDH,and sorted to yield ALDH(br) and ALDH(dim) populations. We measured surface Ag expression and viability of cells in the ALDH(br) and ALDH(dim) populations by flow cytometry and hematopoietic (CFC-H) and megakaryocytic (CFC-Mk) colony-forming cells in each population. RESULTS: ALDH(br) populations isolated from thawed UCB cells were highly enriched for CD34(+) and CD133(+) cells. Flow-sorted ALDH(br) populations were enriched 1116-fold in CFC-H,10-fold in multilineage GEMM colonies and 2015-fold in CFC-Mk compared with the ALDH(dim) population. All progenitors giving rise to large Mk colonies were derived from ALDH(br) populations. DISCUSSION: ALDH(br) populations recovered from thawed,banked UCB with the method we describe have HPC activity and may be useful in the clinic to facilitate reconstitution of erythroid,myeloid and megakaryocytic blood elements.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Bauwens CL et al. (AUG 2011)
Tissue engineering. Part A 17 15-16 1901--9
Geometric control of cardiomyogenic induction in human pluripotent stem cells.
Although it has been observed that aggregate size affects cardiac development,an incomplete understanding of the cellular mechanisms underlying human pluripotent stem cell-derived cardiomyogenesis has limited the development of robust defined-condition cardiac cell generation protocols. Our objective was thus to elucidate cellular and molecular mechanisms underlying the endogenous control of human embryonic stem cell (hESC) cardiac tissue development,and to test the hypothesis that hESC aggregate size influences extraembryonic endoderm (ExE) commitment and cardiac inductive properties. hESC aggregates were generated with 100,1000,or 4000 cells per aggregate using microwells. The frequency of endoderm marker (FoxA2 and GATA6)-expressing cells decreased with increasing aggregate size during early differentiation. Cardiogenesis was maximized in aggregates initiated from 1000 cells,with frequencies of 0.49±0.06 cells exhibiting a cardiac progenitor phenotype (KDR(low)/C-KIT(neg)) on day 5 and 0.24±0.06 expressing cardiac Troponin T on day 16. A direct relationship between ExE and cardiac differentiation efficiency was established by forming aggregates with varying ratios of SOX7 (a transcription factor required for ExE development) overexpressing or knockdown hESCs to unmanipulated hESCs. We demonstrate,in a defined,serum-free cardiac induction system,that robust and efficient cardiac differentiation is a function of endogenous ExE cell concentration,a parameter that can be directly modulated by controlling hESC aggregate size.
View Publication
产品类型:
产品号#:
产品名:
文献
Lu S-J et al. (SEP 2008)
Regenerative medicine 3 5 693--704
Robust generation of hemangioblastic progenitors from human embryonic stem cells.
BACKGROUND: Human embryonic stem cells (hESCs) are a potentially inexhaustible source of cells for replacement therapy. However,successful preclinical and clinical progress requires efficient and controlled differentiation towards the specific differentiated cell fate. METHODS: We previously developed a strategy to generate blast cells (BCs) from hESCs that were capable of differentiating into vascular structures as well as into all hematopoietic cell lineages. Although the BCs were shown to repair damaged vasculature in multiple animal models,the large-scale generation of cells under these conditions was challenging. Here we report a simpler and more efficient method for robust generation of hemangioblastic progenitors. RESULTS: In addition to eliminating several expensive factors that are unnecessary,we demonstrate that bone morphogenetic protein (BMP)-4 and VEGF are necessary and sufficient to induce hemangioblastic commitment and development from hESCs during early stages of differentiation. BMP-4 and VEGF significantly upregulate T-brachyury,KDR,CD31 and Lmo2 gene expression,while dramatically downregulating Oct-4 expression. The addition of basic FGF during growth and expansion was found to further enhance BC development,consistently generating approximately 1 x 10(8) BCs from one six well plate of hESCs. CONCLUSION: This new method represents a significantly improved system for generating hemangioblasts from hESCs,and although simplified,results in an eightfold increase in cell yield.
View Publication