Ramachandra CJA et al. (SEP 2011)
Nucleic Acids Research 39 16 e107
Efficient recombinase-mediated cassette exchange at the AAVS1 locus in human embryonic stem cells using baculoviral vectors
Insertion of a transgene into a defined genomic locus in human embryonic stem cells (hESCs) is crucial in preventing random integration-induced insertional mutagenesis,and can possibly enable persistent transgene expression during hESC expansion and in their differentiated progenies. Here,we employed homologous recombination in hESCs to introduce heterospecific loxP sites into the AAVS1 locus,a site with an open chromatin structure that allows averting transgene silencing phenomena. We then performed Cre recombinase mediated cassette exchange using baculoviral vectors to insert a transgene into the modified AAVS1 locus. Targeting efficiency in the master hESC line with the loxP-docking sites was up to 100%. Expression of the inserted transgene lasted for at least 20 passages during hESC expansion and was retained in differentiated cells derived from the genetically modified hESCs. Thus,this study demonstrates the feasibility of genetic manipulation at the AAVS1 locus with homologous recombination and using viral transduction in hESCs to facilitate recombinase-mediated cassette exchange. The method developed will be useful for repeated gene targeting at a defined locus of the hESC genome.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Trotta R et al. (SEP 2008)
Journal of immunology (Baltimore,Md. : 1950) 181 6 3784--92
TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells.
TGF-beta can be a potent suppressor of lymphocyte effector cell functions and can mediate these effects via distinct molecular pathways. The role of TGF-beta in regulating CD16-mediated NK cell IFN-gamma production and antibody-dependent cellular cytotoxicity (ADCC) is unclear,as are the signaling pathways that may be utilized. Treatment of primary human NK cells with TGF-beta inhibited IFN-gamma production induced by CD16 activation with or without IL-12 or IL-2,and it did so without affecting the phosphorylation/activation of MAP kinases ERK and p38,as well as STAT4. TGF-beta treatment induced SMAD3 phosphorylation,and ectopic overexpression of SMAD3 resulted in a significant decrease in IFN-gamma gene expression following CD16 activation with or without IL-12 or IL-2. Likewise,NK cells obtained from smad3(-/-) mice produced more IFN-gamma in response to CD16 activation plus IL-12 when compared with NK cells obtained from wild-type mice. Coactivation of human NK cells via CD16 and IL-12 induced expression of T-BET,the positive regulator of IFN-gamma,and T-BET was suppressed by TGF-beta and by SMAD3 overexpression. An extended treatment of primary NK cells with TGF-beta was required to inhibit ADCC,and it did so by inhibiting granzyme A and granzyme B expression. This effect was accentuated in cells overexpressing SMAD3. Collectively,our results indicate that TGF-beta inhibits CD16-mediated human NK cell IFN-gamma production and ADCC,and these effects are mediated via SMAD3.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
Yang S-L et al. (DEC 2012)
Protein & cell 3 12 934--942
Compound screening platform using human induced pluripotent stem cells to identify small molecules that promote chondrogenesis.
Articular cartilage,which is mainly composed of collagen II,enables smooth skeletal movement. Degeneration of collagen II can be caused by various events,such as injury,but degeneration especially increases over the course of normal aging. Unfortunately,the body does not fully repair itself from this type of degeneration,resulting in impaired movement. Microfracture,an articular cartilage repair surgical technique,has been commonly used in the clinic to induce the repair of tissue at damage sites. Mesenchymal stem cells (MSC) have also been used as cell therapy to repair degenerated cartilage. However,the therapeutic outcomes of all these techniques vary in different patients depending on their age,health,lesion size and the extent of damage to the cartilage. The repairing tissues either form fibrocartilage or go into a hypertrophic stage,both of which do not reproduce the equivalent functionality of endogenous hyaline cartilage. One of the reasons for this is inefficient chondrogenesis by endogenous and exogenous MSC. Drugs that promote chondrogenesis could be used to induce self-repair of damaged cartilage as a non-invasive approach alone,or combined with other techniques to greatly assist the therapeutic outcomes. The recent development of human induced pluripotent stem cell (iPSCs),which are able to self-renew and differentiate into multiple cell types,provides a potentially valuable cell resource for drug screening in a more relevant" cell type. Here we report a screening platform using human iPSCs in a multi-well plate format to identify compounds that could promote chondrogenesis."
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Xiao X et al. (JUL 2016)
mAbs 8 5 916--27
A novel antibody discovery platform identifies anti-influenza A broadly neutralizing antibodies from human memory B cells.
Monoclonal antibody isolation directly from circulating human B cells is a powerful tool to delineate humoral responses to pathological conditions and discover antibody therapeutics. We have developed a platform aimed at improving the efficiencies of B cell selection and V gene recovery. Here,memory B cells are activated and amplified using Epstein-Barr virus infection,co-cultured with CHO-muCD40L cells,and then assessed by functional screenings. An in vitro transcription and translation (IVTT) approach was used to analyze variable (V) genes recovered from each B cell sample and identify the relevant heavy/light chain pair(s). We achieved efficient amplification and activation of memory B cells,and eliminated the need to: 1) seed B cells at clonal level (≤1 cell/well) or perform limited dilution cloning; 2) immortalize B cells; or 3) assemble V genes into an IgG expression vector to confirm the relevant heavy/light chain pairing. Cross-reactive antibodies targeting a conserved epitope on influenza A hemagglutinin were successfully isolated from a healthy donor. In-depth analysis of the isolated antibodies suggested their potential uses as anti-influenza A antibody therapeutics and uncovered a distinct affinity maturation pathway. Importantly,our results showed that cognate heavy/light chain pairings contributed to both the expression level and binding abilities of our newly isolated VH1-69 family,influenza A neutralizing antibodies,contrasting with previous observations that light chains do not significantly contribute to the function of this group of antibodies. Our results further suggest the potential use of the IVTT as a powerful antibody developability assessment tool.
View Publication
产品类型:
产品号#:
19674
19674RF
产品名:
EasySep™ Direct人B细胞分选试剂盒
RoboSep™ Direct人B细胞分选试剂盒
(May 2025)
Nature Communications 16
Acoustofluidic bioassembly induced morphogenesis for therapeutic tissue fabrication
To build in vitro tissues for therapeutic applications,it is essential to replicate the spatial distribution of cells that occurs during morphogenesis in vivo. However,it remains technically challenging to simultaneously regulate the geometric alignment and aggregation of cells during tissue fabrication. Here,we introduce the acoustofluidic bioassembly induced morphogenesis,which is the combination of precise arrangement of cells by the mechanical forces produced by acoustofluidic cues,and the morphological and functional changes of cells in the following in vitro and in vivo cultures. The acoustofluidic bioassembly can be used to create tissues with regulated nano-,micro-,and macro-structures. We demonstrate that the neuromuscular tissue fabricated with the acoustofluidic bioassembly exhibits enhanced contraction dynamics,electrophysiology,and therapeutic efficacy. The potential of the acoustofluidic bioassembly as an in situ application is demonstrated by fabricating artificial tissues at the defect sites of living tissues. The acoustofluidic bioassembly induced morphogenesis can provide a pioneering platform to fabricate tissues for biomedical applications. Tissue engineering is essential for drug screening and regenerative medicine. Here,authors developed an acoustofluidic method that can induce morphogenesis of therapeutic tissues at varied dimensions/scales.
View Publication
Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations.
The cellular reservoir for latent human cytomegalovirus (HCMV) in the hematopoietic compartment,and the mechanisms governing a latent infection and reactivation from latency are unknown. Previous work has demonstrated that HCMV infects CD34+ progenitors and expresses a limited subset of viral genes. The outcome of HCMV infection may depend on the cell subpopulations infected within the heterogeneous CD34+ compartment. We compared HCMV infection in well-defined CD34+ cell subpopulations. HCMV infection inhibited hematopoietic colony formation from CD34+/CD38- but not CD34+/c-kit+ cells. CD34+/CD38- cells transiently expressed a large subset of HCMV genes that were not expressed in CD34+/c-kit+ cells or cells expressing more mature cell surface phenotypes. Although viral genomes were present in infected cells,viral gene expression was undetectable by 10 days after infection. Importantly,viral replication could be reactivated by coculture with permissive fibroblasts only from the CD34+/CD38- population. Strikingly,a subpopulation of CD34+/CD38- cells expressing a stem cell phenotype (lineage-/Thy-1+) supported a productive HCMV infection. These studies demonstrate that the outcome of HCMV infection in the hematopoietic compartment is dependent on the nature of the cell subpopulations infected and that CD34+/CD38- cells support an HCMV infection with the hallmarks of latency.
View Publication
产品类型:
产品号#:
09500
84435
84445
产品名:
BIT 9500血清替代物
Phanstiel D et al. (MAR 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 11 4093--8
Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells.
Epigenetic regulation through chromatin is thought to play a critical role in the establishment and maintenance of pluripotency. Traditionally,antibody-based technologies were used to probe for specific posttranslational modifications (PTMs) present on histone tails,but these methods do not generally reveal the presence of multiple modifications on a single-histone tail (combinatorial codes). Here,we describe technology for the discovery and quantification of histone combinatorial codes that is based on chromatography and mass spectrometry. We applied this methodology to decipher 74 discrete combinatorial codes on the tail of histone H4 from human embryonic stem (ES) cells. Finally,we quantified the abundances of these codes as human ES cells undergo differentiation to reveal striking changes in methylation and acetylation patterns. For example,H4R3 methylation was observed only in the presence of H4K20 dimethylation; such context-specific patterning exemplifies the power of this technique.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Jun 2025)
APL Bioengineering 9 2
Application of instant assembly of collagen to bioprint cardiac tissues
Advancing cardiac tissue engineering requires innovative fabrication techniques,including 3D bioprinting and tissue maturation,to enable the generation of new muscle for repairing or replacing damaged heart tissue. Recent advances in tissue engineering have highlighted the need for rapid,high-resolution bioprinting methods that preserve cell viability and maintain structural fidelity. Traditional collagen-based bioinks gel slowly,limiting their use in bioprinting. Here,we implement TRACE (tunable rapid assembly of collagenous elements),a macromolecular crowding-driven bioprinting technique that enables the immediate gelation of collagen bioinks infused with cells. This overcomes the need for extended incubation,allowing for direct bioprinting of engineered cardiac tissues with high fidelity. Unlike methods that rely on high-concentration acidic collagen or fibrin for gelation,TRACE achieves rapid bioink stabilization without altering the biochemical composition. This ensures greater versatility in bioink selection while maintaining functional tissue outcomes. Additionally,agarose slurry provides stable structural support,preventing tissue collapse while allowing nutrient diffusion. This approach better preserves complex tissue geometries during culture than gelatin-based support baths or polydimethylsiloxane (PDMS) molds. Our results demonstrate that TRACE enables the bioprinting of structurally stable cardiac tissues with high resolution. By supporting the fabrication of biomimetic tissues,TRACE represents a promising advancement in bioprinting cardiac models and other engineered tissues.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
N. Li et al. (Oct 2025)
Journal of Cellular and Molecular Medicine 29 19
BNIP3L/BNIP3‐Mediated Mitophagy Contributes to the Maintenance of Ovarian Cancer Stem Cells
Ovarian cancer remains the most lethal gynaecological malignancy,with tumour recurrence and chemoresistance posing significant therapeutic challenges. Emerging evidence suggests that cancer stem cells (CSCs),a rare subpopulation within tumours with self‐renewal and differentiation capacities,contribute to these hurdles. Therefore,elucidating the mechanisms that sustain CSCs is critical for improving treatment strategies. Mitophagy,a selective process for eliminating damaged mitochondria,plays a key role in maintaining cellular homeostasis,including CSC survival. Our study demonstrates that ovarian CSCs exhibit enhanced mitophagy,accompanied by elevated expression of the mitochondrial outer membrane receptors BNIP3 and BNIP3L. Knockdown of BNIP3 or BNIP3L significantly reduces mitophagy and impairs CSC self‐renewal,indicating that receptor‐mediated mitophagy is essential for CSC maintenance. Mechanistically,we identify that hyperactivated NF‐κB signalling drives the upregulation of BNIP3 and BNIP3L in ovarian CSCs. Inhibition of NF‐κB signalling,either via p65 knockdown or pharmacological inhibitors,effectively suppresses mitophagy. Furthermore,we demonstrate that elevated DNA‐PK expression contributes to the constitutive activation of NF‐κB signalling,thereby promoting mitophagy in ovarian CSCs. In summary,our findings establish that BNIP3/BNIP3L‐mediated mitophagy,driven by DNA‐PK‐dependent NF‐κB hyperactivation,is essential for CSC maintenance. Targeting the DNA‐PK/NF‐κB/BNIP3L‐BNIP3 axis to disrupt mitochondrial quality control in CSCs represents a promising therapeutic strategy to prevent ovarian cancer recurrence and metastasis.
View Publication