Takeda A et al. (JUL 2006)
Cancer research 66 13 6628--37
NUP98-HOXA9 induces long-term proliferation and blocks differentiation of primary human CD34+ hematopoietic cells.
NUP98-HOXA9,the chimeric protein resulting from the t(7;11)(p15;p15) chromosomal translocation,is a prototype of several NUP98 fusions that occur in myelodysplastic syndromes and acute myeloid leukemia. We examined its effect on differentiation,proliferation,and gene expression in primary human CD34+ hematopoietic cells. Colony-forming cell (CFC) assays in semisolid medium combined with morphologic examination and flow cytometric immunophenotyping revealed that NUP98-HOXA9 increased the numbers of erythroid precursors and impaired both myeloid and erythroid differentiation. In continuous liquid culture,cells transduced with NUP98-HOXA9 exhibited a biphasic growth curve with initial growth inhibition followed by enhanced long-term proliferation,suggesting an increase in the numbers of primitive self-renewing cells. This was confirmed by a dramatic increase in the numbers of long-term culture-initiating cells,the most primitive hematopoietic cells detectable in vitro. To understand the molecular mechanisms underlying the effects of NUP98-HOXA9 on hematopoietic cell proliferation and differentiation,oligonucleotide microarray analysis was done at several time points over 16 days,starting at 6 hours posttransduction. The early growth suppression was preceded by up-regulation of IFNbeta1 and accompanied by marked up-regulation of IFN-induced genes,peaking at 3 days posttransduction. In contrast,oncogenes such as homeobox transcription factors,FLT3,KIT,and WT1 peaked at 8 days or beyond,coinciding with increased proliferation. In addition,several putative tumor suppressors and genes associated with hematopoietic differentiation were repressed at later time points. These findings provide a comprehensive picture of the changes in proliferation,differentiation,and global gene expression that underlie the leukemic transformation of human hematopoietic cells by NUP98-HOXA9.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
文献
Choi K-M et al. (JUN 2008)
Journal of bioscience and bioengineering 105 6 586--94
Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation.
Mesenchymal stem cells (MSCs) derived from bone marrow are an important tool in tissue engineering and cell-based therapies because of their multipotent capacity. Majority of studies on MSCs have investigated the roles of growth factors,cytokines,and hormones. Antioxidants such as ascorbic acid can be used to expand MSCs while preserving their differentiation ability. Moreover,ascorbic acid can also stimulate MSC proliferation without reciprocal loss of phenotype and differentiation potency. In this study,we evaluated the effects of ascorbic acid on the proliferation,differentiation,extracellular matrix (ECM) secretion of MSCs. The MSCs were cultured in media containing various concentrations (0-500 microM) of L-ascorbate-2-phosphate (Asc-2-P) for 2 weeks,following which they were differentiated into adipocytes and osteoblasts. Ascorbic acid stimulated ECM secretion (collagen and glycosaminoglycan) and cell proliferation. Moreover,the phenotypes of the experimental groups as well as the differentiation potential of MSCs remained unchanged. The apparent absence of decreased cell density or morphologic change is consistent with the toxicity observed with 5-250 microM concentrations of Asc-2-P. The results demonstrate that MSC proliferation or differentiation depends on ascorbic acid concentration.
View Publication
产品类型:
产品号#:
72132
产品名:
抗坏血酸(Ascorbic Acid)
文献
Jacobs-Helber SM and Sawyer ST (AUG 2004)
Blood 104 3 696--703
Jun N-terminal kinase promotes proliferation of immature erythroid cells and erythropoietin-dependent cell lines.
Erythropoietin (EPO) is the hormone necessary for development of erythrocytes from immature erythroid cells. EPO activates Jun N-terminal kinase (JNK),a member of the mitogen-activated protein kinase (MAPK) family in the EPO-dependent murine erythroid HCD57 cells. Therefore,we tested if JNK activity supported proliferation and/or survival of these cells. Treatment with the JNK inhibitor SP600125 inhibited JNK activity and EPO-dependent proliferation of HCD57 cells and the human EPO-dependent cell lines TF-1 and UT7-EPO. SP600125 also increased the fraction of cells in G2/M. Introduction of a dominant-negative form of JNK1 inhibited EPO-dependent proliferation in HCD57 cells but did not increase the fraction of cells in G2/M. Constitutive JNK activity was observed in primary murine erythroid progenitors. Treatment of primary mouse bone marrow cells with the SP600125 inhibitor reduced the number of erythroid burst-forming units (BFU-e's) but not the more differentiated erythroid colony-forming units (CFU-e's),and SP600125 protected the BFU-e's from apoptosis induced by cytosine arabinoside,demonstrating that the SP600125 inhibited proliferation of the BFU-e's. Therefore,JNK activity appears to be an important regulator of proliferation in immature,primary erythroid cells and 3 erythroid cell lines but may not be required for the survival or proliferation of CFU-e's or proerythroblasts.
View Publication
产品类型:
产品号#:
03334
产品名:
MethoCult™M3334
文献
Lathia JD et al. (DEC 2008)
The Journal of neuroscience : the official journal of the Society for Neuroscience 28 51 13978--84
Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation.
Toll-like receptors (TLRs) play important roles in innate immunity. Several TLR family members have recently been shown to be expressed by neurons and glial cells in the adult brain,and may mediate responses of these cells to injury and infection. To address the possibility that TLRs play a functional role in development of the nervous system,we analyzed the expression of TLRs during different stages of mouse brain development and assessed the role of TLRs in cell proliferation. TLR3 protein is present in brain cells in early embryonic stages of development,and in cultured neural stem/progenitor cells (NPC). NPC from TLR3-deficient embryos formed greater numbers of neurospheres compared with neurospheres from wild-type embryos. Numbers of proliferating cells,as assessed by phospho histone H3 and proliferating cell nuclear antigen labeling,were also increased in the developing cortex of TLR3-deficient mice compared with wild-type mice in vivo. Treatment of cultured embryonic cortical neurospheres with a TLR3 ligand (polyIC) significantly reduced proliferating (BrdU-labeled) cells and neurosphere formation in wild type but not TLR3(-/-)-derived NPCs. Our findings reveal a novel role for TLR3 in the negative regulation of NPC proliferation in the developing brain.
View Publication
产品类型:
产品号#:
05707
产品名:
NeuroCult™化学解离试剂盒(小鼠)
文献
Yasuda T et al. (MAY 2013)
The Journal of Physiology 591 10 2579--2591
K v 3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation
Adult neural stem/precursor cells (NPCs) play a pivotal role in neuronal plasticity throughout life. Among ion channels identified in adult NPCs,voltage-gated delayed rectifier K(+) (KDR) channels are dominantly expressed. However,the KDR channel subtype and its physiological role are still undefined. We used real-time quantitative RT-PCR and gene knockdown techniques to identify a major functional KDR channel subtype in adult NPCs. Dominant mRNA expression of Kv3.1,a high voltage-gated KDR channel,was quantitatively confirmed. Kv3.1 gene knockdown with specific small interfering RNAs (siRNA) for Kv3.1 significantly inhibited Kv3.1 mRNA expression by 63.9% (P < 0.001) and KDR channel currents by 52.2% (P < 0.001). This indicates that Kv3.1 is the subtype responsible for producing KDR channel outward currents. Resting membrane properties,such as resting membrane potential,of NPCs were not affected by Kv3.1 expression. Kv3.1 knockdown with 300 nm siRNA inhibited NPC growth (increase in cell numbers) by 52.9% (P < 0.01). This inhibition was attributed to decreased cell proliferation,not increased cell apoptosis. We also established a convenient in vitro imaging assay system to evaluate NPC differentiation using NPCs from doublecortin-green fluorescent protein transgenic mice. Kv3.1 knockdown also significantly reduced neuronal differentiation by 31.4% (P < 0.01). We have demonstrated that Kv3.1 is a dominant functional KDR channel subtype expressed in adult NPCs and plays key roles in NPC proliferation and neuronal lineage commitment during differentiation.
View Publication
产品类型:
产品号#:
05701
产品名:
NeuroCult™ 扩增添加物 (小鼠&大鼠)
文献
Karelina K et al. (MAR 2014)
Experimental neurology 253 72--81
Ribosomal S6 kinase regulates ischemia-induced progenitor cell proliferation in the adult mouse hippocampus.
Ischemia-induced progenitor cell proliferation is a prominent example of the adult mammalian brain's ability to regenerate injured tissue resulting from pathophysiological processes. In order to better understand and exploit the cell signaling mechanisms that regulate ischemia-induced proliferation,we examined the role of the p42/44 mitogen-activated protein kinase (MAPK) cascade effector ribosomal S6 kinase (RSK) in this process. Here,using the endothelin-1 ischemia model in wild type mice,we show that the activated form of RSK is expressed in the progenitor cells of the subgranular zone (SGZ) after intrahippocampal cerebral ischemia. Further,RSK inhibition significantly reduces ischemia-induced SGZ progenitor cell proliferation. Using the neurosphere assay,we also show that both SGZ- and subventricular zone (SVZ)-derived adult neural stem cells (NSC) exhibit a significant reduction in proliferation in the presence of RSK and MAPK inhibitors. Taken together,these data reveal RSK as a regulator of ischemia-induced progenitor cell proliferation,and as such,suggest potential therapeutic value may be gained by specifically targeting the regulation of RSK in the progenitor cell population of the SGZ.
View Publication
产品类型:
产品号#:
72714
产品名:
BI-D1870
文献
Kanazawa I et al. (JAN 2007)
BMC cell biology 8 51
Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells.
BACKGROUND Adiponectin is a key mediator of the metabolic syndrome that is caused by visceral fat accumulation. Adiponectin and its receptors are known to be expressed in osteoblasts,but their actions with regard to bone metabolism are still unclear. In this study,we investigated the effects of adiponectin on the proliferation,differentiation,and mineralization of osteoblastic MC3T3-E1 cells. RESULTS Adiponectin receptor type 1 (AdipoR1) mRNA was detected in the cells by RT-PCR. The adenosine monophosphate-activated protein kinase (AMP kinase) was phosphorylated by both adiponectin and a pharmacological AMP kinase activator,5-amino-imidazole-4-carboxamide-riboside (AICAR),in the cells. AdipoR1 small interfering RNA (siRNA) transfection potently knocked down the receptor mRNA,and the effect of this knockdown persisted for as long as 10 days after the transfection. The transfected cells showed decreased expressions of type I collagen and osteocalcin mRNA,as determined by real-time PCR,and reduced ALP activity and mineralization,as determined by von Kossa and Alizarin red stainings. In contrast,AMP kinase activation by AICAR (0.01-0.5 mM) in wild-type MC3T3-E1 cells augmented their proliferation,differentiation,and mineralization. BrdU assay showed that the addition of adiponectin (0.01-1.0 mug/ml) also promoted their proliferation. Osterix,but not Runx-2,appeared to be involved in these processes because AdipoR1 siRNA transfection and AICAR treatments suppressed and enhanced osterix mRNA expression,respectively. CONCLUSION Taken together,this study suggests that adiponectin stimulates the proliferation,differentiation,and mineralization of osteoblasts via the AdipoR1 and AMP kinase signaling pathways in autocrine and/or paracrine fashions.
View Publication
产品类型:
产品号#:
72704
产品名:
AICAR
文献
Soto-Cruz I et al. ( 2008)
Cancer Investigation 26 2 136--144
The Tyrphostin B42 Inhibits Cell Proliferation and HER-2 Autophosphorylation in Cervical Carcinoma Cell Lines
The HER family receptors have an important role controlling cell growth and differentiation. Although the activity of the HER-2 receptor is strictly controlled in normal cells,its overexpression plays a pivotal role in transformation and tumorigenesis. Constitutive phosphorylation of HER-2 protein has been implicated in conferring uncontrolled growth to mammary cancer cells,and to a lesser extent,with adenocarcinoma of uterus,cervix,fallopian tube,and endometrium. This study addresses the role of HER-2 in cervical carcinoma. Firstly,we demonstrate the presence of HER-2 protein expression by flow cytometry in two new cervical carcinoma cell lines CALO and INBL. Secondly,we use the specific tyrosine kinase inhibitors,Tyrphostins to examine HER-2 regulation by the crystal violet assay. Thirdly,we use western blot analysis to assess the state of HER-2 phosphorylation. The most efficient agent,Tyrphostin B42,known as an inhibitor of epithelial growth factor receptor,arrested cervical carcinoma cell lines growth in vitro at micromolar concentrations within 72 h of application. Tyrphostin B42 inhibited the HER2 signal-regulated kinase pathway,as observed by the reduction in the phosphorylated forms of HER2. The loss of phosphorylated forms of HER2 at early time points after Tyrphostin B42 application was associated with suppression of cell growth. Thus,the inhibition of the proliferation of our cervical carcinoma cell lines by Tyrphostin B42 is associated with inhibition of HER2 protein kinase signal.
View Publication
产品类型:
产品号#:
72932
产品名:
AG-490
文献
Lin H et al. (JAN 2017)
Neuro-oncology 19 1 43--54
Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells.
BACKGROUND Glioma is the most common form of primary malignant brain tumor in adults,with approximately 4 cases per 100 000 people each year. Gliomas,like many tumors,are thought to primarily metabolize glucose for energy production; however,the reliance upon glycolysis has recently been called into question. In this study,we aimed to identify the metabolic fuel requirements of human glioma cells. METHODS We used database searches and tissue culture resources to evaluate genotype and protein expression,tracked oxygen consumption rates to study metabolic responses to various substrates,performed histochemical techniques and fluorescence-activated cell sorting-based mitotic profiling to study cellular proliferation rates,and employed an animal model of malignant glioma to evaluate a new therapeutic intervention. RESULTS We observed the presence of enzymes required for fatty acid oxidation within human glioma tissues. In addition,we demonstrated that this metabolic pathway is a major contributor to aerobic respiration in primary-cultured cells isolated from human glioma and grown under serum-free conditions. Moreover,inhibiting fatty acid oxidation reduces proliferative activity in these primary-cultured cells and prolongs survival in a syngeneic mouse model of malignant glioma. CONCLUSIONS Fatty acid oxidation enzymes are present and active within glioma tissues. Targeting this metabolic pathway reduces energy production and cellular proliferation in glioma cells. The drug etomoxir may provide therapeutic benefit to patients with malignant glioma. In addition,the expression of fatty acid oxidation enzymes may provide prognostic indicators for clinical practice.
View Publication
产品类型:
产品号#:
05750
05751
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
文献
Ohno Y et al. (DEC 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 50 21529--34
Hoxb4 transduction down-regulates Geminin protein, providing hematopoietic stem and progenitor cells with proliferation potential.
Retrovirus-mediated transduction of Hoxb4 enhances hematopoietic stem cell (HSC) activity and enforced expression of Hoxb4 induces in vitro development of HSCs from differentiating mouse embryonic stem cells,but the underlying molecular mechanism remains unclear. We previously showed that the HSC activity was abrogated by accumulated Geminin,an inhibitor for the DNA replication licensing factor Cdt1 in mice deficient in Rae28 (also known as Phc1),which encodes a member of Polycomb-group complex 1. In this study we found that Hoxb4 transduction reduced accumulated Geminin in Rae28-deficient mice,despite increasing the mRNA,and restored the impaired HSC activity. Supertransduction of Geminin suppressed the HSC activity induced by Hoxb4 transduction,whereas knockdown of Geminin promoted the clonogenic and replating activities,indicating the importance of Geminin regulation in the molecular mechanism underlying Hoxb4 transduction-mediated enhancement of the HSC activity. This facilitated our investigation of how transduced Hoxb4 reduced Geminin. We showed in vitro and in vivo that Hoxb4 and the Roc1 (also known as Rbx1)-Ddb1-Cul4a ubiquitin ligase core component formed a complex designated as RDCOXB4,which acted as an E3 ubiquitin ligase for Geminin and down-regulated Geminin through the ubiquitin-proteasome system. Down-regulated Geminin and the resultant E2F activation may provide cells with proliferation potential by increasing a DNA prereplicative complex loaded onto chromatin. Here we suggest that transduced Hoxb4 down-regulates Geminin protein probably by constituting the E3 ubiquitin ligase for Geminin to provide hematopoietic stem and progenitor cells with proliferation potential.
View Publication
产品类型:
产品号#:
03231
产品名:
MethoCult™M3231
文献
Yasuda T et al. (FEB 2008)
Molecular and cellular neurosciences 37 2 284--97
K(ir) and K(v) channels regulate electrical properties and proliferation of adult neural precursor cells.
The functional significance of the electrophysiological properties of neural precursor cells (NPCs) was investigated using dissociated neurosphere-derived NPCs from the forebrain subventricular zone (SVZ) of adult mice. NPCs exhibited hyperpolarized resting membrane potentials,which were depolarized by the K(+) channel inhibitor,Ba(2+). Pharmacological analysis revealed two distinct K(+) channel families: Ba(2+)-sensitive K(ir) channels and tetraethylammonium (TEA)-sensitive K(v) (primarily K(DR)) channels. Ba(2+) promoted mitogen-stimulated NPC proliferation,which was mimicked by high extracellular K(+),whereas TEA inhibited proliferation. Based on gene and protein levels in vitro,we identified K(ir)4.1,K(ir)5.1 and K(v)3.1 channels as the functional K(+) channel candidates. Expression of these K(+) channels was immunohistochemically found in NPCs of the adult mouse SVZ,but was negligible in neuroblasts. It therefore appears that expression of K(ir) and K(v) (K(DR)) channels in NPCs and related changes in the resting membrane potential could contribute to NPC proliferation and neuronal lineage commitment in the neurogenic microenvironment.
View Publication
产品类型:
产品号#:
05701
产品名:
NeuroCult™ 扩增添加物 (小鼠&大鼠)
文献
Dai Z et al. (DEC 2007)
Phytomedicine : international journal of phytotherapy and phytopharmacology 14 12 806--14
Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation.
In the present study,we investigated the in vitro effect of resveratrol (RSVL),a polyphenolic phytoestrogen,on cell proliferation and osteoblastic maturation in human bone marrow-derived mesenchymal stem cell (HBMSC) cultures. RSVL (10(-8)-10(-5) M) increased cell growth dose-dependently,as measured by [(3)H]-thymidine incorporation,and stimulated osteoblastic maturation as assessed by alkaline phosphatase (ALP) activity,calcium deposition into the extracellular matrix,and the expression of osteoblastic markers such as RUNX2/CBFA1,Osterix and Osteocalcin in HBMSCs cell cultures. Further studies found that RSVL (10(-6)M) resulted in a rapid activation of both extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) signaling in HBMSCs cultures. The effects of RSVL were mimicked by 17beta-estrodial (10(-8) M) and were abolished by estrogen receptor (ER) antagonist ICI182780. An ERK1/2 pathway inhibitor,PD98059,significantly attenuated RSVL-induced ERK1/2 phosphorylation,consistent with the reduction of cell proliferation and osteoblastic differentiation as well as expression of osteoblastic markers. In contrast,SB203580,a p38 MAPK pathway blocker,blocked RSVL-induced p38 phosphorylation,but resulted in an increase of cell proliferation and a more osteoblastic maturation. These data suggest that RSVL stimulates HBMSCs proliferation and osteoblastic differentiation through an ER-dependent mechanism and coupling to ERK1/2 activation.
View Publication