Conklin JF et al. ( 2012)
Nature communications 3 May 1244
The RB family is required for the self-renewal and survival of human embryonic stem cells.
The mechanisms ensuring the long-term self-renewal of human embryonic stem cells are still only partly understood,limiting their use in cellular therapies. Here we found that increased activity of the RB cell cycle inhibitor in human embryonic stem cells induces cell cycle arrest,differentiation and cell death. Conversely,inactivation of the entire RB family (RB,p107 and p130) in human embryonic stem cells triggers G2/M arrest and cell death through functional activation of the p53 pathway and the cell cycle inhibitor p21. Differences in E2F target gene activation upon loss of RB family function between human embryonic stem cells,mouse embryonic stem cells and human fibroblasts underscore key differences in the cell cycle regulatory networks of human embryonic stem cells. Finally,loss of RB family function promotes genomic instability in both human and mouse embryonic stem cells,uncoupling cell cycle defects from chromosomal instability. These experiments indicate that a homeostatic level of RB activity is essential for the self-renewal and the survival of human embryonic stem cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Sugimine Y et al. (SEP 2016)
International journal of hematology
A portable platform for stepwise hematopoiesis from human pluripotent stem cells within PET-reinforced collagen sponges.
Various systems for differentiating hematopoietic cells from human pluripotent stem cells (PSCs) have been developed,although none have been fully optimized. In this report,we describe the development of a novel three-dimensional system for differentiating hematopoietic cells from PSCs using collagen sponges (CSs) reinforced with poly(ethylene terephthalate) fibers as a scaffold. PSCs seeded onto CSs were differentiated in a stepwise manner with appropriate cytokines under serum-free and feeder-free conditions. This process yielded several lineages of floating hematopoietic cells repeatedly for more than 1 month. On immunohistochemical staining,we detected CD34+ cells and CD45+ cells in the surface and cavities of the CS. Taking advantage of the portability of this system,we were able to culture multiple CSs together floating in medium,making it possible to harvest large numbers of hematopoietic cells repeatedly. Given these findings,we suggest that this novel three-dimensional culture system may be useful in the large-scale culture of PSC-derived hematopoietic cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Pettinato G et al. (NOV 2014)
PLoS ONE 9 11 e100742
ROCK inhibitor is not required for embryoid body formation from singularized human embryonic stem cells
We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin,+ROCKi/-spin,-ROCKi/+spin,and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions,including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation,elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment,and low-cost scalability,which will directly support automated,large-scale production of hEBs and hESC-derived cells needed for clinical,research,or therapeutic applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Zhang CC et al. (APR 2008)
Blood 111 7 3415--23
Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation.
Hematopoietic stem cells (HSCs) are the basis of bone marrow transplantation and are attractive target cells for hematopoietic gene therapy,but these important clinical applications have been severely hampered by difficulties in ex vivo expansion of HSCs. In particular,the use of cord blood for adult transplantation is greatly limited by the number of HSCs. Previously we identified angiopoietin-like proteins and IGF-binding protein 2 (IGFBP2) as new hormones that,together with other factors,can expand mouse bone marrow HSCs in culture. Here,we measure the activity of multipotent human severe combined immunodeficient (SCID)-repopulating cells (SRCs) by transplantation into the nonobese diabetic SCID (NOD/SCID) mice; secondary transplantation was performed to evaluate the self-renewal potential of SRCs. A serum-free medium containing SCF,TPO,and FGF-1 or Flt3-L cannot significantly support expansion of the SRCs present in human cord blood CD133+ cells. Addition of either angiopoietin-like 5 or IGF-binding protein 2 to the cultures led to a sizable expansion of HSC numbers,as assayed by NOD/SCID transplantation. A serum-free culture containing SCF,TPO,FGF-1,angiopoietin-like 5,and IGFBP2 supports an approximately 20-fold net expansion of repopulating human cord blood HSCs,a number potentially applicable to several clinical processes including HSC transplantation.
View Publication
产品类型:
产品号#:
09600
09650
28600
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
L-Calc™有限稀释软件
FOLEY GE and EAGLE H (OCT 1958)
Cancer research 18 9 1011--6
The cytotoxicity of anti-tumor agents for normal human and animal cells in first tissue culture passage.
Yap LYW et al. (FEB 2011)
Tissue engineering. Part C,Methods 17 2 193--207
Defining a threshold surface density of vitronectin for the stable expansion of human embryonic stem cells.
Current methodology for pluripotent human embryonic stem cells (hESCs) expansion relies on murine sarcoma basement membrane substrates (Matrigel™),which precludes the use of these cells in regenerative medicine. To realize the clinical efficacy of hESCs and their derivatives,expansion of these cells in a defined system that is free of animal components is required. This study reports the successful propagation of hESCs (HES-3 and H1) for textgreater 20 passages on tissue culture-treated polystyrene plates,coated from 5 μg/mL of human plasma-purified vitronectin (VN) solution. Cells maintain expression of pluripotent markers Tra1-60 and OCT-4 and are karyotypically normal after 20 passages of continuous culture. In vitro and in vivo differentiation of hESC by embryoid body formation and teratoma yielded cells from the ecto-,endo-,and mesoderm lineages. VN immobilized on tissue culture polystyrene was characterized using a combination of X-ray photoemission spectroscopy,atomic force microscopy,and quantification of the VN surface density with a Bradford protein assay. Ponceau S staining was used to measure VN adsorption and desorption kinetics. Tuning the VN surface density,via the concentration of depositing solution,revealed a threshold surface density of 250 ng/cm²,which is required for hESCs attachment,proliferation,and differentiation. Cell attachment and proliferation assays on VN surface densities above this threshold show the substrate properties to be equally viable.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Jin S et al. ( 2012)
PLoS ONE 7 11 e50880
A synthetic, xeno-free peptide surface for expansion and directed differentiation of human induced pluripotent stem cells.
Human induced pluripotent stem cells have the potential to become an unlimited cell source for cell replacement therapy. The realization of this potential,however,depends on the availability of culture methods that are robust,scalable,and use chemically defined materials. Despite significant advances in hiPSC technologies,the expansion of hiPSCs relies upon the use of animal-derived extracellular matrix extracts,such as Matrigel,which raises safety concerns over the use of these products. In this work,we investigated the feasibility of expanding and differentiating hiPSCs on a chemically defined,xeno-free synthetic peptide substrate,i.e. Corning Synthemax(®) Surface. We demonstrated that the Synthemax Surface supports the attachment,spreading,and proliferation of hiPSCs,as well as hiPSCs' lineage-specific differentiation. hiPSCs colonies grown on Synthemax Surfaces exhibit less spread and more compact morphology compared to cells grown on Matrigel™. The cytoskeleton characterization of hiPSCs grown on the Synthemax Surface revealed formation of denser actin filaments in the cell-cell interface. The down-regulation of vinculin and up-regulation of zyxin expression were also observed in hiPSCs grown on the Synthemax Surface. Further examination of cell-ECM interaction revealed that hiPSCs grown on the Synthemax Surface primarily utilize α(v)β(5) integrins to mediate attachment to the substrate,whereas multiple integrins are involved in cell attachment to Matrigel. Finally,hiPSCs can be maintained undifferentiated on the Synthemax Surface for more than ten passages. These studies provide a novel approach for expansion of hiPSCs using synthetic peptide engineered surface as a substrate to avoid a potential risk of contamination and lot-to-lot variability with animal derived materials.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07930
07931
07940
07955
07956
07959
07954
85850
85857
85870
85875
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
mTeSR™1
mTeSR™1
Elanzew A et al. (OCT 2015)
Biotechnology journal 10 10 1589--1599
A reproducible and versatile system for the dynamic expansion of human pluripotent stem cells in suspension.
Reprogramming of patient cells to human induced pluripotent stem cells (hiPSC) has facilitated in vitro disease modeling studies aiming at deciphering the molecular and cellular mechanisms that contribute to disease pathogenesis and progression. To fully exploit the potential of hiPSC for biomedical applications,technologies that enable the standardized generation and expansion of hiPSC from large numbers of donors are required. Paralleled automated processes for the expansion of hiPSC could provide an opportunity to maximize the generation of hiPSC collections from patient cohorts while minimizing hands-on time and costs. In order to develop a simple method for the parallel expansion of human pluripotent stem cells (hPSC) we established a protocol for their cultivation as undifferentiated aggregates in a bench-top bioreactor system (BioLevitator™). We show that long-term expansion (10 passages) of hPSCs either in mTeSR or E8 medium preserved a normal karyotype,three-germ-layer differentiation potential and high expression of pluripotency-associated markers. The system enables the expansion from low inoculation densities (0.3 × 10(5) cells/mL) and provides a simplified,cost-efficient and time-saving method for the provision of hiPSC at midi-scale. Implementation of this protocol in cell production schemes has the potential to advance cell manufacturing in many areas of hiPSC-based medical research.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Zhang X et al. (JAN 2016)
Carbohydrate Polymers 136 1061--1064
Peptide-conjugated hyaluronic acid surface for the culture of human induced pluripotent stem cells under defined conditions
Hyaluronic acid (HA) has been cross-linked to form hydrogel for potential applications in the self-renewal and differentiation of human pluripotent stem cells (hPSCs) for years. However,HA hydrogel with improved residence time and mechanical integrity that allows the survival of hPSCs under defined conditions is still much needed for clinical applications. In this study,HA was modified with methacrylate functional groups (MeHA) and cross-linked by photo-crosslinking method. After subsequent conjugation with adhesive peptide,these MeHA surfaces demonstrated performance in facilitating human induced pluripotent stem cells (hiPSCs) proliferation,and good pluripotency maintenance of hiPSCs under defined conditions. Moreover,MeHA films on glass-slides exhibited long residence time and mechanical stability throughout hiPSC culture. Our photo-crosslinkable MeHA possesses great value in accelerating the application of HA hydrogel in hiPSCs proliferation and differentiation with the conjugation of adhesive peptides.
View Publication
Cunha B et al. (NOV 2015)
Journal of biotechnology 213 97--108
Exploring continuous and integrated strategies for the up- and downstream processing of human mesenchymal stem cells.
The integration of up- and downstream unit operations can result in the elimination of hold steps,thus decreasing the footprint,and ultimately can create robust closed system operations. This type of design is desirable for the bioprocess of human mesenchymal stem cells (hMSC),where high numbers of pure cells,at low volumes,need to be delivered for therapy applications. This study reports a proof of concept of the integration of a continuous perfusion culture in bioreactors with a tangential flow filtration (TFF) system for the concentration and washing of hMSC. Moreover,we have also explored a continuous alternative for concentrating hMSC. Results show that expanding cells in a continuous perfusion operation mode provided a higher expansion ratio,and led to a shift in cells' metabolism. TFF operated either in continuous or discontinuous allowed to concentrate cells,with high cell recovery (>80%) and viability (>95%); furthermore,continuous TFF permitted to operate longer with higher cell concentrations. Continuous diafiltration led to higher protein clearance (98%) with lower cell death,when comparing to discontinuous diafiltration. Overall,an integrated process allowed for a shorter process time,recovering 70% of viable hMSC (>95%),with no changes in terms of morphology,immunophenotype,proliferation capacity and multipotent differentiation potential.
View Publication
产品类型:
产品号#:
70022
70071
产品名:
Poulsen C et al. (AUG 2015)
Toxicology letters 237 1 21--9
Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.
Long-chain bases are present in the oral cavity. Previously we determined that sphingosine,dihydrosphingosine,and phytosphingosine have potent antimicrobial activity against oral pathogens. Here,we determined the cytotoxicities of long-chain bases for oral cells,an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this,human oral gingival epithelial (GE) keratinocytes,oral gingival fibroblasts (GF),and dendritic cells (DC) were exposed to 10.0-640.0 μM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin),membrane permeability (uptake of propidium iodide or SYTOX-Green),release of cellular contents (LDH),and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC,which were more susceptible. For DC,0.2-10.0 μM long-chain bases and GML were not cytotoxic; 40.0-80.0 μM long-chain bases,but not GML,were cytotoxic; and 80.0 μM long-chain bases induced cellular damage and death in less than 20 min. The LD50 of long-chain bases for GE keratinocytes,GF,and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens,a finding important to pursuing their future potential in treating periodontal and oral infections.
View Publication