Itahana Y et al. ( 2016)
Scientific reports 6 28112
Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells.
The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However,how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells,however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs,suggesting it is a suppressed,bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression,and ectopic expression of p21 in hESCs triggered their differentiation. Further,we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner,whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes,thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals,while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Reibetanz U et al. (JUN 2016)
ACS Nano 10 7 6563--6573
Influence of Growth Characteristics of Induced Pluripotent Stem Cells on Their Uptake Efficiency for Layer-by-Layer Microcarriers
Induced pluripotent stem cells (iPSCs) have the ability to differentiate in any specialized somatic cell type,which makes them an attractive tool for a wide variety of scientific approaches,including regenerative medicine. However,their pluripotent state and their growth in compact colonies render them difficult to access and,therefore,restrict delivery of specific agents for cell manipulation. Thus,our investigation focus was set on the evaluation of the capability of Layer-by-Layer (LbL) designed microcarriers to serve as a potential drug delivery system to iPSCs,as they offer several appealing advantages. Most notably,these carriers allow for the transport of active agents in a protected environment and for a rather specific delivery through surface modifications. As we could show,charge and mode of LbL carrier application as well as the size of the iPSC colonies determine the interaction with and the uptake rate by iPSCs. None of the examined conditions had an influence on iPSC colony properties such as colony morphology and size or maintenance of pluripotent properties. An overall interaction rate of LbL carriers with iPSCs of up to 20 % was achieved. Those data emphasize the applicability of LbL carriers for stem cell research. Additionally,the potential use of LbL carriers as a promising delivery tool for iPSCs was contrasted to viral particles and liposomes. The identified differences among those delivery tools have substantiated our major conclusion that LbL carrier uptake rate is influenced by characteristic features of the iPSC colonies (most notably colony size) in addition to their surface charges.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Miranda C et al. (DEC 2016)
Biotechnology journal 11 12 1628--1638
Scaling up a chemically-defined aggregate-based suspension culture system for neural commitment of human pluripotent stem cells.
The demand of high cell numbers for applications in cellular therapies and drug screening requires the development of scalable platforms capable to generating highly pure populations of tissue-specific cells from human pluripotent stem cells. In this work,we describe the scaling-up of an aggregate-based culture system for neural induction of human induced pluripotent stem cells (hiPSCs) under chemically-defined conditions. A combination of non-enzymatic dissociation and rotary agitation was successfully used to produce homogeneous populations of hiPSC aggregates with an optimal (140 μm) and narrow distribution of diameters (coefficient of variation of 21.6%). Scalable neural commitment of hiPSCs as 3D aggregates was performed in 50 mL spinner flasks,and the process was optimized using a factorial design approach,involving parameters such as agitation rate and seeding density. We were able to produce neural progenitor cell cultures,that at the end of a 6-day neural induction process contained less than 3% of Oct4-positive cells and that,after replating,retained more than 60% of Pax6-positive neural cells. The results here presented should set the stage for the future generation of a clinically relevant number of human neural progenitors for transplantation and other biomedical applications using controlled,automated and reproducible large-scale bioreactor culture systems.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Wei Y et al. (MAR 2017)
Placenta 51 28--37
Generation of trophoblast-like cells from the amnion in vitro: A novel cellular model for trophoblast development.
Despite the high incidence of trophoblast-related diseases,the molecular mechanism of inadequate early trophoblast development is still unclear due to the lack of an appropriate cellular model in vitro. In the present study,we reprogrammed the amniotic cells to be induced pluripotent stem cells (iPSCs) via a non-virus and non-integrated method and subsequently differentiated them into trophoblast-like cells by a modified BMP4 strategy in E6 medium. Compared with the previously studied trophoblast-like cells from ESCs,the iPSCs derived trophoblast-like cells behave similarly in terms of gene expression profiles and biofunctions. Also we confirmed the differentiating tendency from iPSCs to be syncytiotrophoblasts-like cells might be caused by inappropriate differentiating oxygen condition. Additionally,we preliminarily indicated in vitro artificial" differentiation of iPSCs also undergoing a possible trophoblastic stem cell stage as witnessed in vivo. In conclusion we provided an in vitro cellular model to study early trophoblast development for specific individual by using the feasible amnion.
View Publication
产品类型:
产品号#:
85850
85857
产品名:
mTeSR™1
mTeSR™1
文献
Garnache-Ottou F et al. (FEB 2005)
Blood 105 3 1256--64
Expression of the myeloid-associated marker CD33 is not an exclusive factor for leukemic plasmacytoid dendritic cells.
A new entity of acute leukemia coexpressing CD4(+)CD56(+) markers without any other lineage-specific markers has been identified recently as arising from lymphoid-related plasmacytoid dendritic cells (pDCs). In our laboratory,cells from a patient with such CD4(+)CD56(+) lineage-negative leukemia were unexpectedly found to also express the myeloid marker CD33. To confirm the diagnosis of pDC leukemia despite the CD33 expression,we demonstrated that the leukemic cells indeed exhibited pDC phenotypic and functional properties. In 7 of 8 other patients with CD4(+)CD56(+) pDC malignancies,we were able to confirm that the tumor cells expressed CD33 although with variable expression levels. CD33 expression was shown by flow cytometry,reverse transcriptase-polymerase chain reaction,and immunoblot analysis. Furthermore,CD33 monoclonal antibody stimulation of purified CD4(+)CD56(+) leukemic cells led to cytokine secretion,thus confirming the presence of a functional CD33 on these leukemic cells. Moreover,we found that circulating pDCs in healthy individuals also weakly express CD33. Overall,our results demonstrate that the expression of CD33 on CD4(+)CD56(+) lineage-negative cells should not exclude the diagnosis of pDC leukemia and underline that pDC-specific markers should be used at diagnosis for CD4(+)CD56(+) malignancies.
View Publication
产品类型:
产品号#:
15028
15068
产品名:
RosetteSep™人单核细胞富集抗体混合物
RosetteSep™人单核细胞富集抗体混合物
文献
Weng Z et al. (JUL 2014)
Stem cells and development 23 14 1704--1716
A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells.
Self-renewable human pluripotent stem cells (hPSCs) serve as a potential unlimited ex vivo source of human cardiomyocytes (CMs) for cell-based disease modeling and therapies. Although recent advances in directed differentiation protocols have enabled more efficient derivation of hPSC-derived CMs with an efficiency of ∼50%-80% CMs and a final yield of ∼1-20 CMs per starting undifferentiated hPSC,these protocols are often not readily transferrable across lines without first optimizing multiple parameters. Further,the resultant populations are undefined for chamber specificity or heterogeneous containing mixtures of atrial,ventricular (V),and pacemaker derivatives. Here we report a highly cost-effective and reproducibly efficient system for deriving hPSC-ventricular cardiomyocytes (VCMs) from all five human embryonic stem cell (HES2,H7,and H9) and human induced PSC (hiPSC) (reprogrammed from human adult peripheral blood CD34(+) cells using nonintegrating episomal vectors) lines tested. Cardiogenic embryoid bodies could be formed by the sequential addition of BMP4,Rho kinase inhibitor,activin-A,and IWR-1. Spontaneously contracting clusters appeared as early as day 8. At day 16,up to 95% of cells were cTnT(+). Of which,93%,94%,100%,92%,and 92% of cardiac derivatives from HES2,H7,H9,and two iPSC lines,respectively,were VCMs as gauged by signature ventricular action potential and ionic currents (INa(+)/ICa,L(+)/IKr(+)/IKATP(+)); Ca(2+) transients showed positive chronotropic responses to $\$-adrenergic stimulation. Our simple,cost-effective protocol required the least amounts of reagents and time compared with others. While the purity and percentage of PSC-VCMs were comparable to a recently published protocol,the present yield and efficiency with a final output of up to 70 hPSC-VCMs per hPSC was up to 5-fold higher and without the need of performing line-specific optimization. These differences were discussed. The results may lead to mass production of hPSC-VCMs in bioreactors.
View Publication
产品类型:
产品号#:
02690
07913
85850
85857
产品名:
StemSpan™CC100
Dispase(5 U/mL)
mTeSR™1
mTeSR™1
文献
Ortega V et al. (MAR 2016)
Cancer genetics 209 3 82--6
Optimal strategy for obtaining routine chromosome analysis by using negative fractions of CD138 enriched plasma cells.
Fluorescence in situ hybridization (FISH) is superior to routine chromosome analysis (RCA) in detecting important prognostic genetic abnormalities in plasma cell dyscrasia (PCD); however,its sensitivity is hampered due to paucity of plasma cells (PC) in whole bone marrow (BM). Studies showed that the abnormality detection rate in enriched plasma cells (EPC) is greater than unselected plasma cells (UPC),but purification techniques are limiting to only FISH when sample volumes are inadequate. Not performing RCA may compromise patient care since RCA is equally important for detecting non-PC related abnormalities when the diagnosis is undefined. To resolve this critical issue,we designed a study where an immuno-magnetic CD138 enriched positive selection was used for FISH while the negative fraction (NF) was used to retrieve other myeloid elements for RCA. Parallel FISH studies were performed using UPC and CD138 EPC,while karyotyping was achieved using whole BM and discarded myeloid elements from the NF. Results showed that the abnormality rate of EPC was doubled compared to UPC for FISH,and CA displayed 100% success rate using the NF. PCD related chromosome abnormalities were confined to whole BM while non-PCD related abnormalities were found in both whole BM and NF. Our results demonstrate the feasibility of using the NF for RCA.
View Publication
产品类型:
产品号#:
21000
20119
20155
产品名:
RoboSep™- S
RoboSep™ 吸头组件抛光剂
RoboSep™分选试管套装(9个塑料管+吸头保护器)
文献
Haraguchi Y et al. (DEC 2015)
Journal of Tissue Engineering and Regenerative Medicine 9 12 1363--1375
Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.
In this study,a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension,only a few aggregated cells were observed. However,after 3 days,culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry,immunocytochemistry and quantitative RT-PCR,and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium,expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore,the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A,BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes,including HCN4,MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes,including pacemakers. Moreover,when cardiac cell sheets were fabricated using differentiated cardiomyocytes,they beat spontaneously and synchronously,indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering.
View Publication
Perry BC et al. (JUN 2008)
Tissue engineering. Part C,Methods 14 2 149--56
Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use.
Recent studies have shown that mesenchymal stem cells (MSC) with the potential for cell-mediated therapies and tissue engineering applications can be isolated from extracted dental tissues. Here,we investigated the collection,processing,and cryobiological characteristics of MSC from human teeth processed under current good tissue practices (cGTP). Viable dental pulp-derived MSC (DPSC) cultures were isolated from 31 of 40 teeth examined. Of eight DPSC cultures examined more thoroughly,all expressed appropriate cell surface markers and underwent osteogenic,adipogenic,and chondrogenic differentiation in appropriate differentiation medium,thus meeting criteria to be called MSC. Viable DPSC were obtained up to 120 h postextraction. Efficient recovery of DPSC from cryopreserved intact teeth and second-passage DPSC cultures was achieved. These studies indicate that DPSC isolation is feasible for at least 5 days after tooth extraction,and imply that processing immediately after extraction may not be required for successful banking of DPSC. Further,the recovery of viable DPSC after cryopreservation of intact teeth suggests that minimal processing may be needed for the banking of samples with no immediate plans for expansion and use. These initial studies will facilitate the development of future cGTP protocols for the clinical banking of MSC.
View Publication
产品类型:
产品号#:
05401
05402
05404
05411
产品名:
MesenCult™ MSC 基础培养基(人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
文献
Li T et al. (FEB 2010)
Laboratory investigation; a journal of technical methods and pathology 90 2 234--44
ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients' outcome.
Prostate cancer (PCa) contains a small population of cancer stem cells (CSCs) that contribute to its initiation and progression. The development of specific markers for identification of the CSCs may lead to new diagnostic strategies of PCa. Increased aldehyde dehydrogenase 1A1 (ALDH1A1) activity has been found in the stem cell populations of leukemia and some solid tumors. The aim of the study was to investigate the stem-cell-related function and clinical significance of the ALDH1A1 in human PCa. ALDEFLUOR assay was used to isolate ALDH1A1(+) cells from PCa cell lines. Stem cell characteristics of the ALDH1A1(+) cells were then investigated by in vitro and in vivo approaches. The ALDH1A1 expression was also analyzed by immunohistochemistry in 18 normal prostate and 163 PCa tissues. The ALDH1A1(+) PCa cells showed high clonogenic and tumorigenic capacities,and serially reinitiated transplantable tumors that resembled histopathologic characteristics and heterogeneity of the parental PCa cells in mice. Immunohistochemical analysis of human prostate tissues showed that ALDH1A1(+) cells were sparse and limited to the basal component in normal prostates. However,in tumor specimens,increased ALDH1A1 immunopositivity was found not only in secretory type cancer epithelial cells but also in neuroendocrine tumor populations. Furthermore,the high ALDH1A1 expression in PCa was positively correlated with Gleason score (P=0.01) and pathologic stage (P=0.01),and inversely associated with overall survival and cancer-specific survival of the patients (P=0.00093 and 0.00017,respectively). ALDH1A1 could be a prostate CSC-related marker. Measuring its expression might provide a potential approach to study tumorigenesis of PCa and predict outcome of the disease.
View Publication
产品类型:
产品号#:
01700
01705
01702
产品名:
ALDEFLUOR™工具
ALDEFLUOR™DEAB试剂
ALDEFLUOR™测定缓冲液
文献
Li Z et al. (JAN 2009)
PLoS ONE 4 12 e8443
Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction
BACKGROUND: Differentiation of human embryonic stem cells into endothelial cells (hESC-ECs) has the potential to provide an unlimited source of cells for novel transplantation therapies of ischemic diseases by supporting angiogenesis and vasculogenesis. However,the endothelial differentiation efficiency of the conventional embryoid body (EB) method is low while the 2-dimensional method of co-culturing with mouse embryonic fibroblasts (MEFs) require animal product,both of which can limit the future clinical application of hESC-ECs. Moreover,to fully understand the beneficial effects of stem cell therapy,investigators must be able to track the functional biology and physiology of transplanted cells in living subjects over time. METHODOLOGY: In this study,we developed an extracellular matrix (ECM) culture system for increasing endothelial differentiation and free from contaminating animal cells. We investigated the transcriptional changes that occur during endothelial differentiation of hESCs using whole genome microarray,and compared to human umbilical vein endothelial cells (HUVECs). We also showed functional vascular formation by hESC-ECs in a mouse dorsal window model. Moreover,our study is the first so far to transplant hESC-ECs in a myocardial infarction model and monitor cell fate using molecular imaging methods. CONCLUSION: Taken together,we report a more efficient method for derivation of hESC-ECs that express appropriate patterns of endothelial genes,form functional vessels in vivo,and improve cardiac function. These studies suggest that hESC-ECs may provide a novel therapy for ischemic heart disease in the future.
View Publication
产品类型:
产品号#:
09500
85850
85857
产品名:
BIT 9500血清替代物
mTeSR™1
mTeSR™1
文献
Nagano M et al. (AUG 2010)
Stem cells and development 19 8 1195--210
Hypoxia responsive mesenchymal stem cells derived from human umbilical cord blood are effective for bone repair.
Mesenchymal stem cells (MSCs) are highly useful in a variety of cell therapies owing to their multipotential differentiation capability. MSCs derived from umbilical cord blood are generally isolated by their plastic adherence without using specific cell surface markers and examined for their osteogenic,adipogenic,and chondrogenic differentiation properties retrospectively. Here,we report 2 subpopulations of MSCs,separated based on aldehyde dehydrogenase (ALDH) activity. MSCs with a high ALDH activity (Alde-High) proliferated more than those with a low ALDH activity (Alde-Low). Alde-High MSCs had a greater ability to differentiate than Alde-Low MSCs in in vitro culture. Transplantation of Alde-High MSCs into fractured mouse femurs enabled early repair of tissues and rapid bone substitution. Alde-High MSCs were also more responsive to hypoxia than Alde-Low MSCs,with the upregulation of Flt-1,CXCR4,and Angiopoietin-2. Thus,MSCs with a high ALDH activity might serve as an effective therapeutic tool for healing fractures within a short period of time.
View Publication